論文の概要: Bounding data reconstruction attacks with the hypothesis testing
interpretation of differential privacy
- arxiv url: http://arxiv.org/abs/2307.03928v1
- Date: Sat, 8 Jul 2023 08:02:47 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-11 16:26:06.785963
- Title: Bounding data reconstruction attacks with the hypothesis testing
interpretation of differential privacy
- Title(参考訳): 差分プライバシーの仮説検証によるデータ再構成攻撃
- Authors: Georgios Kaissis, Jamie Hayes, Alexander Ziller, Daniel Rueckert
- Abstract要約: レコンストラクションロバストネス(ReRo)は、機械学習モデルに対するデータ再構成攻撃の成功の上限として最近提案されている。
これまでの研究では、差分プライバシー(DP)機構がReRoを提供することを示したが、これまではモンテカルロによるReRo境界の厳密な推定しか示されていない。
- 参考スコア(独自算出の注目度): 78.32404878825845
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We explore Reconstruction Robustness (ReRo), which was recently proposed as
an upper bound on the success of data reconstruction attacks against machine
learning models. Previous research has demonstrated that differential privacy
(DP) mechanisms also provide ReRo, but so far, only asymptotic Monte Carlo
estimates of a tight ReRo bound have been shown. Directly computable ReRo
bounds for general DP mechanisms are thus desirable. In this work, we establish
a connection between hypothesis testing DP and ReRo and derive closed-form,
analytic or numerical ReRo bounds for the Laplace and Gaussian mechanisms and
their subsampled variants.
- Abstract(参考訳): 機械学習モデルに対するデータ再構成攻撃の成功の上限として最近提案されたRestructor Robustness(ReRo)について検討する。
これまでの研究では、差分プライバシー(DP)機構がReRoを提供することを示したが、これまでのところ、ReRo境界のモンテカルロの漸近的な推定しか示されていない。
したがって、一般DP機構に対する直接計算可能なReRo境界が望ましい。
本研究では, 仮説検定 dp と rero の関連を確立し, ラプラス・ガウス機構とそのサブサンプリングされた変種に対する閉形式, 解析的, 数値的rero境界を導出する。
関連論文リスト
- Chain-of-Retrieval Augmented Generation [72.06205327186069]
本稿では,o1-like RAGモデルを学習し,最終回答を生成する前に段階的に関連情報を抽出・推論する手法を提案する。
提案手法であるCoRAGは,進化状態に基づいて動的にクエリを再構成する。
論文 参考訳(メタデータ) (2025-01-24T09:12:52Z) - Retrievals Can Be Detrimental: A Contrastive Backdoor Attack Paradigm on Retrieval-Augmented Diffusion Models [38.57797114175442]
拡散モデル (DM) は近年, 顕著な生成能力を示した。
近年の研究では、高度な検索・拡張生成(RAG)技術によってDMが強化されている。
RAGは、モデルパラメータを著しく低減しつつ、DMの生成と一般化能力を向上させる。
大きな成功にもかかわらず、RAGはさらなる調査を保証できる新しいセキュリティ問題を導入するかもしれない。
論文 参考訳(メタデータ) (2025-01-23T02:42:28Z) - Tight Lower Bounds and Improved Convergence in Performative Prediction [29.169972807928]
過去のスナップショットから過去のデータセットを活用することで、繰り返しリスク最小化(RRM)フレームワークを拡張します。
データセットの最終イテレーションのみを使用するメソッドに対して,新たな上限を導入します。
様々な性能予測ベンチマークにおいて,安定点への高速収束を実証的に観察する。
論文 参考訳(メタデータ) (2024-12-04T19:06:19Z) - Model Reconstruction Using Counterfactual Explanations: A Perspective From Polytope Theory [9.771997770574947]
本研究は, 対物モデルを用いたモデル再構成を改良する方法について分析する。
我々の主な貢献は、モデル再構成における誤差と対実的なクエリの数の間の新しい理論的関係を導出することである。
論文 参考訳(メタデータ) (2024-05-08T18:52:47Z) - Rethinking Radiology Report Generation via Causal Inspired Counterfactual Augmentation [11.266364967223556]
放射線医学報告生成(RRG)は、生体医学分野の視覚・言語相互作用として注目されている。
従来の言語生成タスクのイデオロギーは、レポートとして高い可読性を持つ段落を生成することを目的として、従来の言語生成タスクのイデオロギーを継承した。
RRGの特定の性質である病気間の独立性は無視され、偏りのあるデータ分布によって引き起こされる病気の共起によってモデルが混乱する結果となった。
論文 参考訳(メタデータ) (2023-11-22T10:55:36Z) - Reconstructing Graph Diffusion History from a Single Snapshot [87.20550495678907]
A single SnapsHot (DASH) から拡散履歴を再構築するための新しいバリセンターの定式化を提案する。
本研究では,拡散パラメータ推定のNP硬度により,拡散パラメータの推定誤差が避けられないことを証明する。
また、DITTO(Diffusion hitting Times with Optimal proposal)という効果的な解法も開発している。
論文 参考訳(メタデータ) (2023-06-01T09:39:32Z) - Variational Laplace Autoencoders [53.08170674326728]
変分オートエンコーダは、遅延変数の後部を近似するために、償却推論モデルを用いる。
完全分解ガウス仮定の限定的後部表現性に対処する新しい手法を提案する。
また、深部生成モデルのトレーニングのための変分ラプラスオートエンコーダ(VLAE)という一般的なフレームワークも提示する。
論文 参考訳(メタデータ) (2022-11-30T18:59:27Z) - CC-Cert: A Probabilistic Approach to Certify General Robustness of
Neural Networks [58.29502185344086]
安全クリティカルな機械学習アプリケーションでは、モデルを敵の攻撃から守ることが不可欠である。
意味的に意味のある入力変換に対して、ディープラーニングモデルの証明可能な保証を提供することが重要である。
我々はChernoff-Cramer境界に基づく新しい普遍確率的証明手法を提案する。
論文 参考訳(メタデータ) (2021-09-22T12:46:04Z) - Oversampling Divide-and-conquer for Response-skewed Kernel Ridge
Regression [20.00435452480056]
本研究では,分割・分散手法の限界を克服するために,新しい応答適応分割戦略を開発する。
提案手法は, 従来のダックKRR推定値よりも小さい平均二乗誤差(AMSE)を有することを示す。
論文 参考訳(メタデータ) (2021-07-13T04:01:04Z) - Lower bounds in multiple testing: A framework based on derandomized
proxies [107.69746750639584]
本稿では, 各種コンクリートモデルへの適用例を示す, デランドマイズに基づく分析戦略を提案する。
これらの下界のいくつかを数値シミュレーションし、Benjamini-Hochberg (BH) アルゴリズムの実際の性能と密接な関係を示す。
論文 参考訳(メタデータ) (2020-05-07T19:59:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。