論文の概要: Robust Ranking Explanations
- arxiv url: http://arxiv.org/abs/2307.04024v1
- Date: Sat, 8 Jul 2023 18:05:41 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-11 15:59:52.694952
- Title: Robust Ranking Explanations
- Title(参考訳): ロバストランキング解説
- Authors: Chao Chen, Chenghua Guo, Guixiang Ma, Ming Zeng, Xi Zhang, Sihong Xie
- Abstract要約: 敵対的攻撃、特により脆弱な勾配に基づく説明に対する攻撃に対して、最上位の健全な特徴を堅牢にすることは重要である。
$ell_p$-normsを使った既存の防御対策は、より弱い保護力を持つ。
安定度を推定するための記述厚みを定義し, トラクタブルなサロゲート境界を導出してtextitR2ET アルゴリズムを設計する。
- 参考スコア(独自算出の注目度): 16.217374556142484
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Robust explanations of machine learning models are critical to establish
human trust in the models. Due to limited cognition capability, most humans can
only interpret the top few salient features. It is critical to make top salient
features robust to adversarial attacks, especially those against the more
vulnerable gradient-based explanations. Existing defense measures robustness
using $\ell_p$-norms, which have weaker protection power. We define explanation
thickness for measuring salient features ranking stability, and derive
tractable surrogate bounds of the thickness to design the \textit{R2ET}
algorithm to efficiently maximize the thickness and anchor top salient
features. Theoretically, we prove a connection between R2ET and adversarial
training. Experiments with a wide spectrum of network architectures and data
modalities, including brain networks, demonstrate that R2ET attains higher
explanation robustness under stealthy attacks while retaining accuracy.
- Abstract(参考訳): 機械学習モデルのロバストな説明は、モデルに対する人間の信頼を確立するために重要である。
認識能力が限られているため、ほとんどの人間は最上位のサルエント特徴のみを解釈できる。
上位のサルエント機能を敵の攻撃、特により脆弱な勾配に基づく説明に対して堅牢にすることが重要である。
既存の防御力は、より弱い保護力を持つ$\ell_p$-normsを用いて堅牢である。
提案手法は,サリート特徴量とアンカートップサリート特徴を効率的に最大化するために,サリート特徴量を測定するための説明厚みを定義し,その厚みの移動可能なサーロゲート境界を導出し, \textit{r2et} アルゴリズムを設計する。
理論的には,R2ETと対人訓練の関連性を示す。
脳ネットワークを含む幅広いネットワークアーキテクチャとデータモダリティを用いた実験では、R2ETは精度を維持しながらステルス攻撃下でのロバスト性の高さを実証している。
関連論文リスト
- Robust Graph Neural Networks via Unbiased Aggregation [18.681451049083407]
グラフニューラルネットワーク(GNN)の敵対的堅牢性は、強い適応攻撃によって発見されたセキュリティの誤った感覚のために疑問視されている。
私たちは、その堅牢性と限界を理解するために、統一されたロバストな見積もりポイントを提供する。
論文 参考訳(メタデータ) (2023-11-25T05:34:36Z) - Doubly Robust Instance-Reweighted Adversarial Training [107.40683655362285]
本稿では,2重のインスタンス再重み付き対向フレームワークを提案する。
KL偏差正規化損失関数の最適化により重みを求める。
提案手法は, 平均ロバスト性能において, 最先端のベースライン法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2023-08-01T06:16:18Z) - Provable Robust Saliency-based Explanations [16.217374556142484]
R2ETは, モデル精度を維持しつつ, ステルス攻撃下でのロバスト性が高いことを示す。
ネットワークアーキテクチャとデータモダリティの幅広い実験により、R2ETはモデル精度を維持しながら、ステルス攻撃下でのロバスト性が高い説明が得られることが示された。
論文 参考訳(メタデータ) (2022-12-28T22:05:32Z) - Revisiting Residual Networks for Adversarial Robustness: An
Architectural Perspective [22.59262601575886]
残余ネットワークに着目し、トポロジ、カーネルサイズ、アクティベーション、正規化といったアーキテクチャ設計をブロックレベルで検討する。
我々は、モデル容量の幅広い範囲にまたがる、対向的に頑健な残留ネットワークRobostResNetsのポートフォリオを提示する。
論文 参考訳(メタデータ) (2022-12-21T13:19:25Z) - Masking Adversarial Damage: Finding Adversarial Saliency for Robust and
Sparse Network [33.18197518590706]
敵対的な例は、ディープニューラルネットワークの弱い信頼性と潜在的なセキュリティ問題を引き起こす。
本稿では, 対向的損失の2次情報を利用した新しい対向的プルーニング手法, Masking Adversarial damage (MAD)を提案する。
我々は,MADが敵の強靭性を損なうことなく敵の訓練網を効果的に突破し,従来の敵のプルーニング手法よりも優れた性能を示すことを示す。
論文 参考訳(メタデータ) (2022-04-06T11:28:06Z) - Clustering Effect of (Linearized) Adversarial Robust Models [60.25668525218051]
本稿では, 敵の強靭性に対する新たな理解を提案し, ドメイン適応や頑健性向上といったタスクに適用する。
提案したクラスタリング戦略の合理性と優越性を実験的に評価した。
論文 参考訳(メタデータ) (2021-11-25T05:51:03Z) - Exploring Architectural Ingredients of Adversarially Robust Deep Neural
Networks [98.21130211336964]
ディープニューラルネットワーク(DNN)は敵の攻撃に弱いことが知られている。
本稿では,ネットワーク幅と深さがDNNの強靭性に及ぼす影響について検討する。
論文 参考訳(メタデータ) (2021-10-07T23:13:33Z) - Adaptive Feature Alignment for Adversarial Training [56.17654691470554]
CNNは通常、敵攻撃に対して脆弱であり、セキュリティに敏感なアプリケーションに脅威をもたらす。
任意の攻撃強度の特徴を生成するための適応的特徴アライメント(AFA)を提案する。
本手法は任意の攻撃強度の特徴を自動的に整列するように訓練されている。
論文 参考訳(メタデータ) (2021-05-31T17:01:05Z) - Adversarial Robustness under Long-Tailed Distribution [93.50792075460336]
敵対的ロバスト性はディープネットワークの脆弱性と本質的特徴を明らかにすることで近年広く研究されている。
本研究では,長尾分布下における敵対的脆弱性と防御について検討する。
我々は、スケール不変とデータ再分散という2つの専用モジュールからなるクリーンで効果的なフレームワークであるRoBalを提案する。
論文 参考訳(メタデータ) (2021-04-06T17:53:08Z) - Do Wider Neural Networks Really Help Adversarial Robustness? [92.8311752980399]
モデルロバスト性は自然精度と摂動安定性のトレードオフと密接に関係していることを示す。
本稿では,ワイドモデル上でラムダ$を適応的に拡大するWidth Adjusted Regularization(WAR)手法を提案する。
論文 参考訳(メタデータ) (2020-10-03T04:46:17Z) - Second Order Optimization for Adversarial Robustness and
Interpretability [6.700873164609009]
本稿では,2次近似による第1次及び第2次情報を対向損失に組み込んだ新しい正則化器を提案する。
正規化器における1つの繰り返しのみを用いることで、先行勾配や曲率正規化よりも強い強靭性が得られることが示されている。
それは、ネットワークが人間の知覚によく適合する機能を学ぶという、ATの興味深い側面を保っている。
論文 参考訳(メタデータ) (2020-09-10T15:05:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。