Threshold-Consistent Margin Loss for Open-World Deep Metric Learning
- URL: http://arxiv.org/abs/2307.04047v2
- Date: Wed, 13 Mar 2024 00:52:37 GMT
- Title: Threshold-Consistent Margin Loss for Open-World Deep Metric Learning
- Authors: Qin Zhang, Linghan Xu, Qingming Tang, Jun Fang, Ying Nian Wu, Joe
Tighe, Yifan Xing
- Abstract summary: Existing losses used in deep metric learning (DML) for image retrieval often lead to highly non-uniform intra-class and inter-class representation structures.
Inconsistency often complicates the threshold selection process when deploying commercial image retrieval systems.
We propose a novel variance-based metric called Operating-Point-Inconsistency-Score (OPIS) that quantifies the variance in the operating characteristics across classes.
- Score: 42.03620337000911
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing losses used in deep metric learning (DML) for image retrieval often
lead to highly non-uniform intra-class and inter-class representation
structures across test classes and data distributions. When combined with the
common practice of using a fixed threshold to declare a match, this gives rise
to significant performance variations in terms of false accept rate (FAR) and
false reject rate (FRR) across test classes and data distributions. We define
this issue in DML as threshold inconsistency. In real-world applications, such
inconsistency often complicates the threshold selection process when deploying
commercial image retrieval systems. To measure this inconsistency, we propose a
novel variance-based metric called Operating-Point-Inconsistency-Score (OPIS)
that quantifies the variance in the operating characteristics across classes.
Using the OPIS metric, we find that achieving high accuracy levels in a DML
model does not automatically guarantee threshold consistency. In fact, our
investigation reveals a Pareto frontier in the high-accuracy regime, where
existing methods to improve accuracy often lead to degradation in threshold
consistency. To address this trade-off, we introduce the Threshold-Consistent
Margin (TCM) loss, a simple yet effective regularization technique that
promotes uniformity in representation structures across classes by selectively
penalizing hard sample pairs. Extensive experiments demonstrate TCM's
effectiveness in enhancing threshold consistency while preserving accuracy,
simplifying the threshold selection process in practical DML settings.
Related papers
- Towards Robust and Interpretable EMG-based Hand Gesture Recognition using Deep Metric Meta Learning [37.21211404608413]
We propose a shift to deep metric-based meta-learning in EMG PR to supervise the creation of meaningful and interpretable representations.
We derive a robust class proximity-based confidence estimator that leads to a better rejection of incorrect decisions.
arXiv Detail & Related papers (2024-04-17T23:37:50Z) - Noisy Correspondence Learning with Self-Reinforcing Errors Mitigation [63.180725016463974]
Cross-modal retrieval relies on well-matched large-scale datasets that are laborious in practice.
We introduce a novel noisy correspondence learning framework, namely textbfSelf-textbfReinforcing textbfErrors textbfMitigation (SREM)
arXiv Detail & Related papers (2023-12-27T09:03:43Z) - Continual-MAE: Adaptive Distribution Masked Autoencoders for Continual Test-Time Adaptation [49.827306773992376]
Continual Test-Time Adaptation (CTTA) is proposed to migrate a source pre-trained model to continually changing target distributions.
Our proposed method attains state-of-the-art performance in both classification and segmentation CTTA tasks.
arXiv Detail & Related papers (2023-12-19T15:34:52Z) - ProcSim: Proxy-based Confidence for Robust Similarity Learning [0.6963971634605796]
We show that popular benchmark datasets often contain numerous wrong labels, and DML methods are susceptible to them.
Intending to study the effect of realistic noise, we create an ontology of the classes in a dataset and use it to simulate semantically coherent labeling mistakes.
To train robust DML models, we propose ProcSim, a framework that assigns a confidence score to each sample using the normalized distance to its class representative.
arXiv Detail & Related papers (2023-11-01T17:17:14Z) - Learning Prompt-Enhanced Context Features for Weakly-Supervised Video
Anomaly Detection [37.99031842449251]
Video anomaly detection under weak supervision presents significant challenges.
We present a weakly supervised anomaly detection framework that focuses on efficient context modeling and enhanced semantic discriminability.
Our approach significantly improves the detection accuracy of certain anomaly sub-classes, underscoring its practical value and efficacy.
arXiv Detail & Related papers (2023-06-26T06:45:16Z) - An Adaptive Plug-and-Play Network for Few-Shot Learning [12.023266104119289]
Few-shot learning requires a model to classify new samples after learning from only a few samples.
Deep networks and complex metrics tend to induce overfitting, making it difficult to further improve the performance.
We propose plug-and-play model-adaptive resizer (MAR) and adaptive similarity metric (ASM) without any other losses.
arXiv Detail & Related papers (2023-02-18T13:25:04Z) - Hierarchical Semi-Supervised Contrastive Learning for
Contamination-Resistant Anomaly Detection [81.07346419422605]
Anomaly detection aims at identifying deviant samples from the normal data distribution.
Contrastive learning has provided a successful way to sample representation that enables effective discrimination on anomalies.
We propose a novel hierarchical semi-supervised contrastive learning framework, for contamination-resistant anomaly detection.
arXiv Detail & Related papers (2022-07-24T18:49:26Z) - Adaptive neighborhood Metric learning [184.95321334661898]
We propose a novel distance metric learning algorithm, named adaptive neighborhood metric learning (ANML)
ANML can be used to learn both the linear and deep embeddings.
The emphlog-exp mean function proposed in our method gives a new perspective to review the deep metric learning methods.
arXiv Detail & Related papers (2022-01-20T17:26:37Z) - Exploiting Sample Uncertainty for Domain Adaptive Person
Re-Identification [137.9939571408506]
We estimate and exploit the credibility of the assigned pseudo-label of each sample to alleviate the influence of noisy labels.
Our uncertainty-guided optimization brings significant improvement and achieves the state-of-the-art performance on benchmark datasets.
arXiv Detail & Related papers (2020-12-16T04:09:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.