論文の概要: Towards Assumption-free Bias Mitigation
- arxiv url: http://arxiv.org/abs/2307.04105v1
- Date: Sun, 9 Jul 2023 05:55:25 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-11 15:19:14.217309
- Title: Towards Assumption-free Bias Mitigation
- Title(参考訳): 無仮定バイアス緩和に向けて
- Authors: Chia-Yuan Chang, Yu-Neng Chuang, Kwei-Herng Lai, Xiaotian Han, Xia Hu,
Na Zou
- Abstract要約: 本稿では,バイアス緩和のための特徴相互作用をモデル化することにより,関連する属性を自動的に検出する仮定フリーフレームワークを提案する。
4つの実世界のデータセットに対する実験結果から,提案手法が不公平な予測行動を著しく軽減できることが示された。
- 参考スコア(独自算出の注目度): 47.5131072745805
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite the impressive prediction ability, machine learning models show
discrimination towards certain demographics and suffer from unfair prediction
behaviors. To alleviate the discrimination, extensive studies focus on
eliminating the unequal distribution of sensitive attributes via multiple
approaches. However, due to privacy concerns, sensitive attributes are often
either unavailable or missing in real-world scenarios. Therefore, several
existing works alleviate the bias without sensitive attributes. Those studies
face challenges, either in inaccurate predictions of sensitive attributes or
the need to mitigate unequal distribution of manually defined non-sensitive
attributes related to bias. The latter requires strong assumptions about the
correlation between sensitive and non-sensitive attributes. As data
distribution and task goals vary, the strong assumption on non-sensitive
attributes may not be valid and require domain expertise. In this work, we
propose an assumption-free framework to detect the related attributes
automatically by modeling feature interaction for bias mitigation. The proposed
framework aims to mitigate the unfair impact of identified biased feature
interactions. Experimental results on four real-world datasets demonstrate that
our proposed framework can significantly alleviate unfair prediction behaviors
by considering biased feature interactions.
- Abstract(参考訳): 驚くべき予測能力にもかかわらず、機械学習モデルは特定の人口層に対する差別を示し、不公平な予測行動に苦しむ。
差別を緩和するために、広範囲な研究は複数のアプローチによる機密属性の不等な分布の排除に焦点を当てている。
しかしながら、プライバシ上の懸念から、センシティブな属性は現実のシナリオでは利用できないか、あるいは欠落していることが多い。
したがって、いくつかの既存の研究は、敏感な属性なしでバイアスを軽減する。
これらの研究は、センシティブな属性の不正確な予測や、バイアスに関連する手動で定義された非センシティブな属性の不平等な分布の緩和といった課題に直面している。
後者は、感度特性と非感度特性の相関について強い仮定を必要とする。
データ分散とタスクの目標が異なるため、非感受性属性に対する強い仮定は有効ではなく、ドメインの専門知識を必要とする可能性がある。
本研究では,バイアス緩和のための特徴的相互作用をモデル化し,関連する属性を自動的に検出する前提なしフレームワークを提案する。
提案するフレームワークは、特定されたバイアスのある特徴相互作用による不公平な影響を軽減することを目的としている。
実世界の4つのデータセットに対する実験結果から,提案するフレームワークは,偏りのある特徴相互作用を考慮し,不当な予測行動を著しく軽減できることが示された。
関連論文リスト
- Causality and Independence Enhancement for Biased Node Classification [56.38828085943763]
各種グラフニューラルネットワーク(GNN)に適用可能な新しい因果性・独立性向上(CIE)フレームワークを提案する。
提案手法は,ノード表現レベルでの因果的特徴と突発的特徴を推定し,突発的相関の影響を緩和する。
我々のアプローチCIEは、GNNの性能を大幅に向上するだけでなく、最先端の debiased ノード分類法よりも優れています。
論文 参考訳(メタデータ) (2023-10-14T13:56:24Z) - Learning for Counterfactual Fairness from Observational Data [62.43249746968616]
公正な機械学習は、人種、性別、年齢などの特定の保護された(感受性のある)属性によって記述されるある種のサブグループに対して、学習モデルのバイアスを取り除くことを目的としている。
カウンターファクトフェアネスを達成するための既存の手法の前提条件は、データに対する因果モデルの事前の人間の知識である。
本研究では,新しいフレームワークCLAIREを提案することにより,因果関係を付与せずに観測データから対実的に公正な予測を行う問題に対処する。
論文 参考訳(メタデータ) (2023-07-17T04:08:29Z) - A statistical approach to detect sensitive features in a group fairness
setting [10.087372021356751]
本稿では,不公平な結果の検証に訓練されたモデルを必要としないセンシティブな特徴を自動的に認識するタスクに対処する前処理ステップを提案する。
我々の経験的結果は、我々の仮説を証明し、文献に敏感であると考えられるいくつかの特徴が必ずしも異質な(不公平な)結果を必要とするとは限らないことを示す。
論文 参考訳(メタデータ) (2023-05-11T17:30:12Z) - Counterfactual Reasoning for Bias Evaluation and Detection in a Fairness
under Unawareness setting [6.004889078682389]
現在のAI規制では、不公平な結果を防ぐために、アルゴリズムの意思決定プロセスで機密機能を破棄する必要がある。
本稿では、機密機能が破棄された場合でも継続可能な機械学習モデルの潜在的な隠れバイアスを明らかにする方法を提案する。
論文 参考訳(メタデータ) (2023-02-16T10:36:18Z) - Hyper-parameter Tuning for Fair Classification without Sensitive Attribute Access [12.447577504758485]
トレーニングデータや検証データの機密属性にアクセスすることなく、公平な分類器を訓練するフレームワークを提案する。
我々は,これらのプロキシラベルが平均精度制約下での公平性を最大化するために利用できることを理論的,実証的に示す。
論文 参考訳(メタデータ) (2023-02-02T19:45:50Z) - Simultaneous Improvement of ML Model Fairness and Performance by
Identifying Bias in Data [1.76179873429447]
トレーニング前にデータセットから削除すべき特定の種類のバイアスを記述したインスタンスを検出できるデータ前処理手法を提案する。
特に、類似した特徴を持つインスタンスが存在するが、保護属性の変動に起因するラベルが異なる問題設定では、固有のバイアスがデータセット内で引き起こされる、と主張する。
論文 参考訳(メタデータ) (2022-10-24T13:04:07Z) - Semi-FairVAE: Semi-supervised Fair Representation Learning with
Adversarial Variational Autoencoder [92.67156911466397]
逆変分オートエンコーダに基づく半教師付き公正表現学習手法を提案する。
我々は、バイアス認識モデルを用いて、機密属性の固有バイアス情報をキャプチャする。
また、偏見のないモデルを用いて、対立学習を用いて偏見情報を取り除き、偏見のない公正表現を学習する。
論文 参考訳(メタデータ) (2022-04-01T15:57:47Z) - Statistical discrimination in learning agents [64.78141757063142]
統計的差別は、訓練人口のバイアスとエージェントアーキテクチャの両方の関数としてエージェントポリシーに現れる。
我々は、リカレントニューラルネットワークを使用するエージェントによる差別の低減と、トレーニング環境のバイアスの低減が示される。
論文 参考訳(メタデータ) (2021-10-21T18:28:57Z) - You Can Still Achieve Fairness Without Sensitive Attributes: Exploring
Biases in Non-Sensitive Features [29.94644351343916]
本稿では,これらの特徴を同時利用して正確な予測とモデルの正則化を行う新しいフレームワークを提案する。
実世界のデータセットにおける実験結果は,提案モデルの有効性を示す。
論文 参考訳(メタデータ) (2021-04-29T17:52:11Z) - Differentially Private and Fair Deep Learning: A Lagrangian Dual
Approach [54.32266555843765]
本稿では,個人の機密情報のプライバシを保護するとともに,非差別的予測器の学習を可能にするモデルについて検討する。
この方法は、微分プライバシーの概念と、公正性制約を満たすニューラルネットワークの設計にラグランジアン双対性(Lagrangian duality)を用いることに依存している。
論文 参考訳(メタデータ) (2020-09-26T10:50:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。