Histopathology Whole Slide Image Analysis with Heterogeneous Graph
Representation Learning
- URL: http://arxiv.org/abs/2307.04189v1
- Date: Sun, 9 Jul 2023 14:43:40 GMT
- Title: Histopathology Whole Slide Image Analysis with Heterogeneous Graph
Representation Learning
- Authors: Tsai Hor Chan, Fernando Julio Cendra, Lan Ma, Guosheng Yin, Lequan Yu
- Abstract summary: We propose a novel graph-based framework to leverage the inter-relationships among different types of nuclei for WSI analysis.
Specifically, we formulate the WSI as a heterogeneous graph with "nucleus-type" attribute to each node and a semantic attribute similarity to each edge.
Our framework outperforms the state-of-the-art methods with considerable margins on various tasks.
- Score: 78.49090351193269
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph-based methods have been extensively applied to whole-slide
histopathology image (WSI) analysis due to the advantage of modeling the
spatial relationships among different entities. However, most of the existing
methods focus on modeling WSIs with homogeneous graphs (e.g., with homogeneous
node type). Despite their successes, these works are incapable of mining the
complex structural relations between biological entities (e.g., the diverse
interaction among different cell types) in the WSI. We propose a novel
heterogeneous graph-based framework to leverage the inter-relationships among
different types of nuclei for WSI analysis. Specifically, we formulate the WSI
as a heterogeneous graph with "nucleus-type" attribute to each node and a
semantic similarity attribute to each edge. We then present a new
heterogeneous-graph edge attribute transformer (HEAT) to take advantage of the
edge and node heterogeneity during massage aggregating. Further, we design a
new pseudo-label-based semantic-consistent pooling mechanism to obtain
graph-level features, which can mitigate the over-parameterization issue of
conventional cluster-based pooling. Additionally, observing the limitations of
existing association-based localization methods, we propose a causal-driven
approach attributing the contribution of each node to improve the
interpretability of our framework. Extensive experiments on three public TCGA
benchmark datasets demonstrate that our framework outperforms the
state-of-the-art methods with considerable margins on various tasks. Our codes
are available at https://github.com/HKU-MedAI/WSI-HGNN.
Related papers
- Leveraging Invariant Principle for Heterophilic Graph Structure Distribution Shifts [42.77503881972965]
Heterophilic Graph Neural Networks (HGNNs) have shown promising results for semi-supervised learning tasks on graphs.
How to learn invariant node representations on heterophilic graphs to handle this structure difference or distribution shifts remains unexplored.
We propose textbfHEI, a framework capable of generating invariant node representations through incorporating heterophily information.
arXiv Detail & Related papers (2024-08-18T14:10:34Z) - Dynamic Graph Representation with Knowledge-aware Attention for
Histopathology Whole Slide Image Analysis [11.353826466710398]
We propose a novel dynamic graph representation algorithm that conceptualizes WSIs as a form of the knowledge graph structure.
Specifically, we dynamically construct neighbors and directed edge embeddings based on the head and tail relationships between instances.
Our end-to-end graph representation learning approach has outperformed the state-of-the-art WSI analysis methods on three TCGA benchmark datasets and in-house test sets.
arXiv Detail & Related papers (2024-03-12T14:58:51Z) - MamMIL: Multiple Instance Learning for Whole Slide Images with State Space Models [56.37780601189795]
We propose a framework named MamMIL for WSI analysis.
We represent each WSI as an undirected graph.
To address the problem that Mamba can only process 1D sequences, we propose a topology-aware scanning mechanism.
arXiv Detail & Related papers (2024-03-08T09:02:13Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
We propose a simple yet efficient framework to make the homogeneous GNNs have adequate ability to handle heterogeneous graphs.
Specifically, we propose Relation Embedding based Graph Neural Networks (RE-GNNs), which employ only one parameter per relation to embed the importance of edge type relations and self-loop connections.
arXiv Detail & Related papers (2022-09-23T05:24:18Z) - Descent Steps of a Relation-Aware Energy Produce Heterogeneous Graph
Neural Networks [25.59092732148598]
Heterogeneous graph neural networks (GNNs) achieve strong performance on node classification tasks in a semi-supervised learning setting.
We propose a novel heterogeneous GNN architecture in which layers are derived from optimization steps that descend a novel relation-aware energy function.
arXiv Detail & Related papers (2022-06-22T13:48:08Z) - Heterogeneous Graph Neural Networks using Self-supervised Reciprocally
Contrastive Learning [102.9138736545956]
Heterogeneous graph neural network (HGNN) is a very popular technique for the modeling and analysis of heterogeneous graphs.
We develop for the first time a novel and robust heterogeneous graph contrastive learning approach, namely HGCL, which introduces two views on respective guidance of node attributes and graph topologies.
In this new approach, we adopt distinct but most suitable attribute and topology fusion mechanisms in the two views, which are conducive to mining relevant information in attributes and topologies separately.
arXiv Detail & Related papers (2022-04-30T12:57:02Z) - SHGNN: Structure-Aware Heterogeneous Graph Neural Network [77.78459918119536]
This paper proposes a novel Structure-Aware Heterogeneous Graph Neural Network (SHGNN) to address the above limitations.
We first utilize a feature propagation module to capture the local structure information of intermediate nodes in the meta-path.
Next, we use a tree-attention aggregator to incorporate the graph structure information into the aggregation module on the meta-path.
Finally, we leverage a meta-path aggregator to fuse the information aggregated from different meta-paths.
arXiv Detail & Related papers (2021-12-12T14:18:18Z) - HeMI: Multi-view Embedding in Heterogeneous Graphs [8.87527266373087]
representation learning of heterogeneous graphs (HGs) embeds the rich structure and semantics of such graphs into a low-dimensional space.
We propose a self-supervised method that learns HG representations by relying on knowledge exchange and discovery among different HG structural semantics.
We show that the proposed self-supervision both outperforms and improves competing methods by 1% and up to 10% for all tasks.
arXiv Detail & Related papers (2021-09-14T23:04:42Z) - HMSG: Heterogeneous Graph Neural Network based on Metapath Subgraph
Learning [2.096172374930129]
We propose a new heterogeneous graph neural network model named HMSG.
We decompose the heterogeneous graph into multiple subgraphs.
Each subgraph associates specific semantic and structural information.
Through a type-specific attribute transformation, node attributes can also be transferred among different types of nodes.
arXiv Detail & Related papers (2021-09-07T05:02:59Z) - Heterogeneous Graph Transformer [49.675064816860505]
Heterogeneous Graph Transformer (HGT) architecture for modeling Web-scale heterogeneous graphs.
To handle dynamic heterogeneous graphs, we introduce the relative temporal encoding technique into HGT.
To handle Web-scale graph data, we design the heterogeneous mini-batch graph sampling algorithm---HGSampling---for efficient and scalable training.
arXiv Detail & Related papers (2020-03-03T04:49:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.