Leveraging Invariant Principle for Heterophilic Graph Structure Distribution Shifts
- URL: http://arxiv.org/abs/2408.09490v2
- Date: Thu, 17 Oct 2024 10:15:38 GMT
- Title: Leveraging Invariant Principle for Heterophilic Graph Structure Distribution Shifts
- Authors: Jinluan Yang, Zhengyu Chen, Teng Xiao, Wenqiao Zhang, Yong Lin, Kun Kuang,
- Abstract summary: Heterophilic Graph Neural Networks (HGNNs) have shown promising results for semi-supervised learning tasks on graphs.
How to learn invariant node representations on heterophilic graphs to handle this structure difference or distribution shifts remains unexplored.
We propose textbfHEI, a framework capable of generating invariant node representations through incorporating heterophily information.
- Score: 42.77503881972965
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Heterophilic Graph Neural Networks (HGNNs) have shown promising results for semi-supervised learning tasks on graphs. Notably, most real-world heterophilic graphs are composed of a mixture of nodes with different neighbor patterns, exhibiting local node-level homophilic and heterophilic structures. However, existing works are only devoted to designing better HGNN backbones or architectures for node classification tasks on heterophilic and homophilic graph benchmarks simultaneously, and their analyses of HGNN performance with respect to nodes are only based on the determined data distribution without exploring the effect caused by this structural difference between training and testing nodes. How to learn invariant node representations on heterophilic graphs to handle this structure difference or distribution shifts remains unexplored. In this paper, we first discuss the limitations of previous graph-based invariant learning methods from the perspective of data augmentation. Then, we propose \textbf{HEI}, a framework capable of generating invariant node representations through incorporating heterophily information to infer latent environments without augmentation, which are then used for invariant prediction, under heterophilic graph structure distribution shifts. We theoretically show that our proposed method can achieve guaranteed performance under heterophilic graph structure distribution shifts. Extensive experiments on various benchmarks and backbones can also demonstrate the effectiveness of our method compared with existing state-of-the-art baselines.
Related papers
- The Heterophilic Graph Learning Handbook: Benchmarks, Models, Theoretical Analysis, Applications and Challenges [101.83124435649358]
Homophily principle, ie nodes with the same labels or similar attributes are more likely to be connected.
Recent work has identified a non-trivial set of datasets where GNN's performance compared to the NN's is not satisfactory.
arXiv Detail & Related papers (2024-07-12T18:04:32Z) - The Heterophilic Snowflake Hypothesis: Training and Empowering GNNs for Heterophilic Graphs [59.03660013787925]
We introduce the Heterophily Snowflake Hypothesis and provide an effective solution to guide and facilitate research on heterophilic graphs.
Our observations show that our framework acts as a versatile operator for diverse tasks.
It can be integrated into various GNN frameworks, boosting performance in-depth and offering an explainable approach to choosing the optimal network depth.
arXiv Detail & Related papers (2024-06-18T12:16:00Z) - Learn from Heterophily: Heterophilous Information-enhanced Graph Neural Network [4.078409998614025]
Heterophily, nodes with different labels tend to be connected based on semantic meanings, Graph Neural Networks (GNNs) often exhibit suboptimal performance.
We propose and demonstrate that the valuable semantic information inherent in heterophily can be utilized effectively in graph learning.
We propose HiGNN, an innovative approach that constructs an additional new graph structure, that integrates heterophilous information by leveraging node distribution.
arXiv Detail & Related papers (2024-03-26T03:29:42Z) - Histopathology Whole Slide Image Analysis with Heterogeneous Graph
Representation Learning [78.49090351193269]
We propose a novel graph-based framework to leverage the inter-relationships among different types of nuclei for WSI analysis.
Specifically, we formulate the WSI as a heterogeneous graph with "nucleus-type" attribute to each node and a semantic attribute similarity to each edge.
Our framework outperforms the state-of-the-art methods with considerable margins on various tasks.
arXiv Detail & Related papers (2023-07-09T14:43:40Z) - Demystifying Structural Disparity in Graph Neural Networks: Can One Size
Fit All? [61.35457647107439]
Most real-world homophilic and heterophilic graphs are comprised of a mixture of nodes in both homophilic and heterophilic structural patterns.
We provide evidence that Graph Neural Networks(GNNs) on node classification typically perform admirably on homophilic nodes.
We then propose a rigorous, non-i.i.d PAC-Bayesian generalization bound for GNNs, revealing reasons for the performance disparity.
arXiv Detail & Related papers (2023-06-02T07:46:20Z) - Powerful Graph Convolutioal Networks with Adaptive Propagation Mechanism
for Homophily and Heterophily [38.50800951799888]
Graph Convolutional Networks (GCNs) have been widely applied in various fields due to their significant power on processing graph-structured data.
Existing methods deal with heterophily by mainly aggregating higher-order neighborhoods or combing the immediate representations.
This paper proposes a novel propagation mechanism, which can automatically change the propagation and aggregation process according to homophily or heterophily.
arXiv Detail & Related papers (2021-12-27T08:19:23Z) - Simple Truncated SVD based Model for Node Classification on Heterophilic
Graphs [0.5309004257911242]
Graph Neural Networks (GNNs) have shown excellent performance on graphs that exhibit strong homophily.
Recent approaches have typically modified aggregation schemes, designed adaptive graph filters, etc. to address this limitation.
We propose a simple alternative method that exploits Truncated Singular Value Decomposition (TSVD) of topological structure and node features.
arXiv Detail & Related papers (2021-06-24T07:48:18Z) - Is Homophily a Necessity for Graph Neural Networks? [50.959340355849896]
Graph neural networks (GNNs) have shown great prowess in learning representations suitable for numerous graph-based machine learning tasks.
GNNs are widely believed to work well due to the homophily assumption ("like attracts like"), and fail to generalize to heterophilous graphs where dissimilar nodes connect.
Recent works design new architectures to overcome such heterophily-related limitations, citing poor baseline performance and new architecture improvements on a few heterophilous graph benchmark datasets as evidence for this notion.
In our experiments, we empirically find that standard graph convolutional networks (GCNs) can actually achieve better performance than
arXiv Detail & Related papers (2021-06-11T02:44:00Z) - Graph Neural Networks with Heterophily [40.23690407583509]
We propose a novel framework called CPGNN that generalizes GNNs for graphs with either homophily or heterophily.
We show that replacing the compatibility matrix in our framework with the identity (which represents pure homophily) reduces to GCN.
arXiv Detail & Related papers (2020-09-28T18:29:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.