Seismic Data Interpolation based on Denoising Diffusion Implicit Models
with Resampling
- URL: http://arxiv.org/abs/2307.04226v2
- Date: Thu, 13 Jul 2023 15:29:37 GMT
- Title: Seismic Data Interpolation based on Denoising Diffusion Implicit Models
with Resampling
- Authors: Xiaoli Wei, Chunxia Zhang, Hongtao Wang, Chengli Tan, Deng Xiong,
Baisong Jiang, Jiangshe Zhang, Sang-Woon Kim
- Abstract summary: In this paper, we propose a novel seismic denoising diffusion implicit model with resampling.
The model inference utilizes the denoising diffusion implicit model, conditioning on the known traces, to enable high-quality quantification with fewer diffusion steps.
- Score: 8.806557897730137
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The incompleteness of the seismic data caused by missing traces along the
spatial extension is a common issue in seismic acquisition due to the existence
of obstacles and economic constraints, which severely impairs the imaging
quality of subsurface geological structures. Recently, deep learningbased
seismic interpolation methods have attained promising progress, while achieving
stable training of generative adversarial networks is not easy, and performance
degradation is usually notable if the missing patterns in the testing and
training do not match. In this paper, we propose a novel seismic denoising
diffusion implicit model with resampling. The model training is established on
the denoising diffusion probabilistic model, where U-Net is equipped with the
multi-head self-attention to match the noise in each step. The cosine noise
schedule, serving as the global noise configuration, promotes the high
utilization of known trace information by accelerating the passage of the
excessive noise stages. The model inference utilizes the denoising diffusion
implicit model, conditioning on the known traces, to enable high-quality
interpolation with fewer diffusion steps. To enhance the coherency between the
known traces and the missing traces within each reverse step, the inference
process integrates a resampling strategy to achieve an information recap on the
former interpolated traces. Extensive experiments conducted on synthetic and
field seismic data validate the superiority of our model and its robustness to
various missing patterns. In addition, uncertainty quantification and ablation
studies are also investigated.
Related papers
- Simple and Critical Iterative Denoising: A Recasting of Discrete Diffusion in Graph Generation [0.0]
dependencies between intermediate noisy states lead to error accumulation and propagation during the reverse denoising process.<n>We propose a novel framework called Simple Iterative Denoising, which simplifies discrete diffusion and circumvents the issue.<n>Our empirical evaluations demonstrate that the proposed method significantly outperforms existing discrete diffusion baselines in graph generation tasks.
arXiv Detail & Related papers (2025-03-27T15:08:58Z) - Enhancing Sample Generation of Diffusion Models using Noise Level Correction [9.014666170540304]
We propose a novel method to enhance sample generation by aligning the estimated noise level with the true distance of noisy samples to the manifold.
Specifically, we introduce a noise level correction network, leveraging a pre-trained denoising network, to refine noise level estimates during the denoising process.
Experimental results demonstrate that our method significantly improves sample quality in both unconstrained and constrained generation scenarios.
arXiv Detail & Related papers (2024-12-07T01:19:14Z) - On the Relation Between Linear Diffusion and Power Iteration [42.158089783398616]
We study the generation process as a correlation machine''
We show that low frequencies emerge earlier in the generation process, where the denoising basis vectors are more aligned to the true data with a rate depending on their eigenvalues.
This model allows us to show that the linear diffusion model converges in mean to the leading eigenvector of the underlying data, similarly to the prevalent power iteration method.
arXiv Detail & Related papers (2024-10-16T07:33:12Z) - Denoising as Adaptation: Noise-Space Domain Adaptation for Image Restoration [64.84134880709625]
We show that it is possible to perform domain adaptation via the noise space using diffusion models.
In particular, by leveraging the unique property of how auxiliary conditional inputs influence the multi-step denoising process, we derive a meaningful diffusion loss.
We present crucial strategies such as channel-shuffling layer and residual-swapping contrastive learning in the diffusion model.
arXiv Detail & Related papers (2024-06-26T17:40:30Z) - Inference Stage Denoising for Undersampled MRI Reconstruction [13.8086726938161]
Reconstruction of magnetic resonance imaging (MRI) data has been positively affected by deep learning.
A key challenge remains: to improve generalisation to distribution shifts between the training and testing data.
arXiv Detail & Related papers (2024-02-12T12:50:10Z) - Blue noise for diffusion models [50.99852321110366]
We introduce a novel and general class of diffusion models taking correlated noise within and across images into account.
Our framework allows introducing correlation across images within a single mini-batch to improve gradient flow.
We perform both qualitative and quantitative evaluations on a variety of datasets using our method.
arXiv Detail & Related papers (2024-02-07T14:59:25Z) - One More Step: A Versatile Plug-and-Play Module for Rectifying Diffusion
Schedule Flaws and Enhancing Low-Frequency Controls [77.42510898755037]
One More Step (OMS) is a compact network that incorporates an additional simple yet effective step during inference.
OMS elevates image fidelity and harmonizes the dichotomy between training and inference, while preserving original model parameters.
Once trained, various pre-trained diffusion models with the same latent domain can share the same OMS module.
arXiv Detail & Related papers (2023-11-27T12:02:42Z) - DiffSED: Sound Event Detection with Denoising Diffusion [70.18051526555512]
We reformulate the SED problem by taking a generative learning perspective.
Specifically, we aim to generate sound temporal boundaries from noisy proposals in a denoising diffusion process.
During training, our model learns to reverse the noising process by converting noisy latent queries to the groundtruth versions.
arXiv Detail & Related papers (2023-08-14T17:29:41Z) - A Geometric Perspective on Diffusion Models [57.27857591493788]
We inspect the ODE-based sampling of a popular variance-exploding SDE.
We establish a theoretical relationship between the optimal ODE-based sampling and the classic mean-shift (mode-seeking) algorithm.
arXiv Detail & Related papers (2023-05-31T15:33:16Z) - DiffusionAD: Norm-guided One-step Denoising Diffusion for Anomaly Detection [80.20339155618612]
DiffusionAD is a novel anomaly detection pipeline comprising a reconstruction sub-network and a segmentation sub-network.<n>A rapid one-step denoising paradigm achieves hundreds of times acceleration while preserving comparable reconstruction quality.<n>Considering the diversity in the manifestation of anomalies, we propose a norm-guided paradigm to integrate the benefits of multiple noise scales.
arXiv Detail & Related papers (2023-03-15T16:14:06Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
Pathological brain lesions exhibit diverse appearance in brain images.
Unsupervised anomaly detection approaches have been proposed using only normal data for training.
We show that optimization of the spatial resolution and magnitude of the noise improves the performance of different model training regimes.
arXiv Detail & Related papers (2023-01-19T21:39:38Z) - Empowering Diffusion Models on the Embedding Space for Text Generation [38.664533078347304]
We study the optimization challenges encountered with both the embedding space and the denoising model.
Data distribution is learnable for embeddings, which may lead to the collapse of the embedding space and unstable training.
Based on the above analysis, we propose Difformer, an embedding diffusion model based on Transformer.
arXiv Detail & Related papers (2022-12-19T12:44:25Z) - From Denoising Diffusions to Denoising Markov Models [38.33676858989955]
Denoising diffusions are state-of-the-art generative models exhibiting remarkable empirical performance.
We propose a unifying framework generalising this approach to a wide class of spaces and leading to an original extension of score matching.
arXiv Detail & Related papers (2022-11-07T14:34:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.