論文の概要: Efficient Bayesian travel-time tomography with geologically-complex
priors using sensitivity-informed polynomial chaos expansion and deep
generative networks
- arxiv url: http://arxiv.org/abs/2307.04228v2
- Date: Wed, 19 Jul 2023 17:24:29 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-20 16:45:52.330182
- Title: Efficient Bayesian travel-time tomography with geologically-complex
priors using sensitivity-informed polynomial chaos expansion and deep
generative networks
- Title(参考訳): 感度インフォーム多項式カオス展開と深部生成ネットワークを用いた地質コンプレックスによるベイズ旅行時間トモグラフィの効率化
- Authors: Giovanni Angelo Meles, Macarena Amaya, Shiran Levy, Stefano Marelli,
Niklas Linde
- Abstract要約: 本稿では,PCA-PCEサロゲートモデリングの精度とピリオ表現の観点から,VAEの優れた再構成性能を両立させる戦略を提案する。
MCMCプロセス内では、VOEのパラメトリゼーションが事前探索とサンプル提案に利用される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Monte Carlo Markov Chain (MCMC) methods commonly confront two fundamental
challenges: the accurate characterization of the prior distribution and the
efficient evaluation of the likelihood. In the context of Bayesian studies on
tomography, principal component analysis (PCA) can in some cases facilitate the
straightforward definition of the prior distribution, while simultaneously
enabling the implementation of accurate surrogate models based on polynomial
chaos expansion (PCE) to replace computationally intensive full-physics forward
solvers. When faced with scenarios where PCA does not offer a direct means of
easily defining the prior distribution alternative methods like deep generative
models (e.g., variational autoencoders (VAEs)), can be employed as viable
options. However, accurately producing a surrogate capable of capturing the
intricate non-linear relationship between the latent parameters of a VAE and
the outputs of forward modeling presents a notable challenge. Indeed, while PCE
models provide high accuracy when the input-output relationship can be
effectively approximated by relatively low-degree multivariate polynomials,
this condition is typically unmet when utilizing latent variables derived from
deep generative models. In this contribution, we present a strategy that
combines the excellent reconstruction performances of VAE in terms of prio
representation with the accuracy of PCA-PCE surrogate modeling in the context
of Bayesian ground penetrating radar (GPR) travel-time tomography. Within the
MCMC process, the parametrization of the VAE is leveraged for prior exploration
and sample proposal. Concurrently, modeling is conducted using PCE, which
operates on either globally or locally defined principal components of the VAE
samples under examination.
- Abstract(参考訳): モンテカルロ・マルコフ・チェーン (mcmc) 法は、事前分布の正確なキャラクタリゼーションと確率の効率的な評価という2つの基本的な課題に直面する。
トモグラフィーに関するベイズ研究の文脈では、主成分分析(PCA)は、計算集約的な全物理前方解法を置き換えるために多項式カオス展開(PCE)に基づく正確な代理モデルの実装を可能にすると同時に、事前分布の直接的な定義を容易にする。
PCAが、より深い生成モデル(VAE)のような、事前の配布方法を簡単に定義する手段を提供していないシナリオに直面する場合、実行可能なオプションとして使用できる。
しかしながら、VAEの潜伏パラメータとフォワードモデリングの出力との間の複雑な非線形関係を捉えることができるサロゲートを正確に生成することは、注目すべき課題である。
実際、PCEモデルは、入力-出力関係が比較的低次多変量多項式によって効果的に近似できる場合に高い精度を提供するが、この条件は通常、深層生成モデルから派生した潜時変数を利用する際には未成熟である。
本研究では,prio表現の観点からのvaeの優れた再構成性能と,ベイズ地中レーダ(gpr)トモグラフィの文脈におけるpca-pceサロゲートモデル精度を組み合わせた手法を提案する。
MCMCプロセス内では、VOEのパラメトリゼーションが事前探索とサンプル提案に利用される。
同時に、VAEサンプルのグローバルまたはローカルに定義された主成分を検査対象とするPCEを用いてモデリングを行う。
関連論文リスト
- MITA: Bridging the Gap between Model and Data for Test-time Adaptation [68.62509948690698]
テスト時間適応(TTA)は、モデルの一般化性を高めるための有望なパラダイムとして登場した。
本稿では,Met-In-The-MiddleをベースとしたMITAを提案する。
論文 参考訳(メタデータ) (2024-10-12T07:02:33Z) - Steering Masked Discrete Diffusion Models via Discrete Denoising Posterior Prediction [88.65168366064061]
本稿では,確率論的推論の課題として,事前学習したMDMを操る作業を行う新しいフレームワークであるDDPPを紹介する。
私たちのフレームワークは、3つの新しい目標のファミリーにつながります。
Wet-lab Validation(ウェット・ラブ・バリデーション)を用いて,報酬最適化タンパク質配列の過渡的発現を観察する。
論文 参考訳(メタデータ) (2024-10-10T17:18:30Z) - Synthetic location trajectory generation using categorical diffusion
models [50.809683239937584]
拡散モデル(DPM)は急速に進化し、合成データのシミュレーションにおける主要な生成モデルの一つとなっている。
本稿では,個人が訪れた物理的位置を表す変数列である合成個別位置軌跡(ILT)の生成にDPMを用いることを提案する。
論文 参考訳(メタデータ) (2024-02-19T15:57:39Z) - Toward the Identifiability of Comparative Deep Generative Models [7.5479347719819865]
比較深部生成モデル(DGM)における識別可能性の理論を提案する。
これらのモデルは、一般的な混合関数のクラスにおいて識別性に欠けるが、混合関数が断片的アフィンであるときに驚くほど識別可能であることを示す。
また, モデルミス種別の影響についても検討し, 従来提案されていた比較DGMの正則化手法が, 潜伏変数の数が事前に分かっていない場合に, 識別可能性を高めることを実証的に示す。
論文 参考訳(メタデータ) (2024-01-29T06:10:54Z) - Online Variational Sequential Monte Carlo [49.97673761305336]
我々は,計算効率が高く正確なモデルパラメータ推定とベイジアン潜在状態推定を提供する変分連続モンテカルロ法(VSMC)を構築した。
オンラインVSMCは、パラメータ推定と粒子提案適応の両方を効率よく、完全にオンザフライで実行することができる。
論文 参考訳(メタデータ) (2023-12-19T21:45:38Z) - Low-dimensional Data-based Surrogate Model of a Continuum-mechanical
Musculoskeletal System Based on Non-intrusive Model Order Reduction [0.0]
データ駆動型モデルオーダーリダクションを用いた代理モデルのような従来の手法は、高忠実度モデルをより広く利用するために用いられる。
ヒト上腕部の複素有限要素モデルに対する代理モデル手法の利点を実証する。
論文 参考訳(メタデータ) (2023-02-13T17:14:34Z) - Deep Generative Modeling on Limited Data with Regularization by
Nontransferable Pre-trained Models [32.52492468276371]
本稿では,限られたデータを用いた生成モデルの分散を低減するために,正規化深層生成モデル(Reg-DGM)を提案する。
Reg-DGMは、ある発散の重み付け和とエネルギー関数の期待を最適化するために、事前訓練されたモデルを使用する。
実験的に、様々な事前訓練された特徴抽出器とデータ依存エネルギー関数により、Reg-DGMはデータ制限のある強力なDGMの生成性能を一貫して改善する。
論文 参考訳(メタデータ) (2022-08-30T10:28:50Z) - PAC Reinforcement Learning for Predictive State Representations [60.00237613646686]
部分的に観察可能な力学系におけるオンライン強化学習(RL)について検討する。
我々は、他のよく知られたモデルをキャプチャする表現モデルである予測状態表現(PSR)モデルに焦点を当てる。
我々は,サンプル複雑性のスケーリングにおいて,ほぼ最適なポリシを学習可能な,PSRのための新しいモデルベースアルゴリズムを開発した。
論文 参考訳(メタデータ) (2022-07-12T17:57:17Z) - Surrogate-based variational data assimilation for tidal modelling [0.0]
データ同化(DA)は、物理知識と観測を結合するために広く用いられている。
気候変動の文脈では、古いキャリブレーションは必ずしも新しいシナリオに使用できない。
これにより、DA計算コストの問題が提起される。
複素モデルを代用する2つの方法が提案されている。
論文 参考訳(メタデータ) (2021-06-08T07:39:38Z) - Deep neural network enabled corrective source term approach to hybrid
analysis and modeling [0.0]
ハイブリッド分析モデリング(Hybrid Analysis and Modeling, HAM)は、物理に基づくモデリングとデータ駆動モデリングを組み合わせることを目的とした、新しいモデリングパラダイムである。
補正元項アプローチ(CoSTA)のHAMに対する新しいアプローチを導入し、正当化し、実証する。
論文 参考訳(メタデータ) (2021-05-24T20:17:13Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
現在の自己エンコーダに基づく非絡み合い表現学習法は、(集合体)後部をペナルティ化し、潜伏因子の統計的独立を促進することで、非絡み合いを実現する。
本稿では,不整合因子をペナルティに基づく不整合表現学習法を用いて学習する,新しい多段階モデリング手法を提案する。
次に、低品質な再構成を、欠落した関連潜伏変数をモデル化するために訓練された別の深層生成モデルで改善する。
論文 参考訳(メタデータ) (2020-10-25T18:51:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。