Bayesian tomography using polynomial chaos expansion and deep generative
networks
- URL: http://arxiv.org/abs/2307.04228v4
- Date: Thu, 19 Oct 2023 14:58:59 GMT
- Title: Bayesian tomography using polynomial chaos expansion and deep generative
networks
- Authors: Giovanni Angelo Meles, Macarena Amaya, Shiran Levy, Stefano Marelli,
Niklas Linde
- Abstract summary: We present a strategy combining the excellent reconstruction performances of a variational autoencoder (VAE) with the accuracy of PCA-PCE surrogate modeling.
Within the MCMC process, the parametrization of the VAE is leveraged for prior exploration and sample proposals.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Implementations of Markov chain Monte Carlo (MCMC) methods need to confront
two fundamental challenges: accurate representation of prior information and
efficient evaluation of likelihoods. Principal component analysis (PCA) and
related techniques can in some cases facilitate the definition and sampling of
the prior distribution, as well as the training of accurate surrogate models,
using for instance, polynomial chaos expansion (PCE). However, complex
geological priors with sharp contrasts necessitate more complex
dimensionality-reduction techniques, such as, deep generative models (DGMs). By
sampling a low-dimensional prior probability distribution defined in the
low-dimensional latent space of such a model, it becomes possible to
efficiently sample the physical domain at the price of a generator that is
typically highly non-linear. Training a surrogate that is capable of capturing
intricate non-linear relationships between latent parameters and outputs of
forward modeling presents a notable challenge. Indeed, while PCE models provide
high accuracy when the input-output relationship can be effectively
approximated by relatively low-degree multivariate polynomials, this condition
is typically not met when employing latent variables derived from DGMs. In this
contribution, we present a strategy combining the excellent reconstruction
performances of a variational autoencoder (VAE) with the accuracy of PCA-PCE
surrogate modeling in the context of Bayesian ground penetrating radar (GPR)
traveltime tomography. Within the MCMC process, the parametrization of the VAE
is leveraged for prior exploration and sample proposals. Concurrently,
surrogate modeling is conducted using PCE, which operates on either globally or
locally defined principal components of the VAE samples under examination.
Related papers
- MITA: Bridging the Gap between Model and Data for Test-time Adaptation [68.62509948690698]
Test-Time Adaptation (TTA) has emerged as a promising paradigm for enhancing the generalizability of models.
We propose Meet-In-The-Middle based MITA, which introduces energy-based optimization to encourage mutual adaptation of the model and data from opposing directions.
arXiv Detail & Related papers (2024-10-12T07:02:33Z) - Steering Masked Discrete Diffusion Models via Discrete Denoising Posterior Prediction [88.65168366064061]
We introduce Discrete Denoising Posterior Prediction (DDPP), a novel framework that casts the task of steering pre-trained MDMs as a problem of probabilistic inference.
Our framework leads to a family of three novel objectives that are all simulation-free, and thus scalable.
We substantiate our designs via wet-lab validation, where we observe transient expression of reward-optimized protein sequences.
arXiv Detail & Related papers (2024-10-10T17:18:30Z) - Synthetic location trajectory generation using categorical diffusion
models [50.809683239937584]
Diffusion models (DPMs) have rapidly evolved to be one of the predominant generative models for the simulation of synthetic data.
We propose using DPMs for the generation of synthetic individual location trajectories (ILTs) which are sequences of variables representing physical locations visited by individuals.
arXiv Detail & Related papers (2024-02-19T15:57:39Z) - Toward the Identifiability of Comparative Deep Generative Models [7.5479347719819865]
We propose a theory of identifiability for comparative Deep Generative Models (DGMs)
We show that, while these models lack identifiability across a general class of mixing functions, they surprisingly become identifiable when the mixing function is piece-wise affine.
We also investigate the impact of model misspecification, and empirically show that previously proposed regularization techniques for fitting comparative DGMs help with identifiability when the number of latent variables is not known in advance.
arXiv Detail & Related papers (2024-01-29T06:10:54Z) - Online Variational Sequential Monte Carlo [49.97673761305336]
We build upon the variational sequential Monte Carlo (VSMC) method, which provides computationally efficient and accurate model parameter estimation and Bayesian latent-state inference.
Online VSMC is capable of performing efficiently, entirely on-the-fly, both parameter estimation and particle proposal adaptation.
arXiv Detail & Related papers (2023-12-19T21:45:38Z) - Low-dimensional Data-based Surrogate Model of a Continuum-mechanical
Musculoskeletal System Based on Non-intrusive Model Order Reduction [0.0]
Non-traditional approaches such as surrogate modeling using data-driven model order reduction are used to make high-fidelity models more widely available anyway.
We demonstrate the benefits of the surrogate modeling approach on a complex finite element model of a human upper-arm.
arXiv Detail & Related papers (2023-02-13T17:14:34Z) - Deep Generative Modeling on Limited Data with Regularization by
Nontransferable Pre-trained Models [32.52492468276371]
We propose regularized deep generative model (Reg-DGM) to reduce the variance of generative modeling with limited data.
Reg-DGM uses a pre-trained model to optimize a weighted sum of a certain divergence and the expectation of an energy function.
Empirically, with various pre-trained feature extractors and a data-dependent energy function, Reg-DGM consistently improves the generation performance of strong DGMs with limited data.
arXiv Detail & Related papers (2022-08-30T10:28:50Z) - PAC Reinforcement Learning for Predictive State Representations [60.00237613646686]
We study online Reinforcement Learning (RL) in partially observable dynamical systems.
We focus on the Predictive State Representations (PSRs) model, which is an expressive model that captures other well-known models.
We develop a novel model-based algorithm for PSRs that can learn a near optimal policy in sample complexity scalingly.
arXiv Detail & Related papers (2022-07-12T17:57:17Z) - Surrogate-based variational data assimilation for tidal modelling [0.0]
Data assimilation (DA) is widely used to combine physical knowledge and observations.
In a context of climate change, old calibrations can not necessarily be used for new scenarios.
This raises the question of DA computational cost.
Two methods are proposed to replace the complex model by a surrogate.
arXiv Detail & Related papers (2021-06-08T07:39:38Z) - Deep neural network enabled corrective source term approach to hybrid
analysis and modeling [0.0]
Hybrid Analysis and Modeling (HAM) is an emerging modeling paradigm which aims to combine physics-based modeling and data-driven modeling.
We introduce, justify and demonstrate a novel approach to HAM -- the Corrective Source Term Approach (CoSTA)
arXiv Detail & Related papers (2021-05-24T20:17:13Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
Current autoencoder-based disentangled representation learning methods achieve disentanglement by penalizing the ( aggregate) posterior to encourage statistical independence of the latent factors.
We present a novel multi-stage modeling approach where the disentangled factors are first learned using a penalty-based disentangled representation learning method.
Then, the low-quality reconstruction is improved with another deep generative model that is trained to model the missing correlated latent variables.
arXiv Detail & Related papers (2020-10-25T18:51:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.