Low-dimensional Data-based Surrogate Model of a Continuum-mechanical
Musculoskeletal System Based on Non-intrusive Model Order Reduction
- URL: http://arxiv.org/abs/2302.06528v1
- Date: Mon, 13 Feb 2023 17:14:34 GMT
- Title: Low-dimensional Data-based Surrogate Model of a Continuum-mechanical
Musculoskeletal System Based on Non-intrusive Model Order Reduction
- Authors: Jonas Kneifl, David Rosin, Oliver R\"ohrle, and J\"org Fehr
- Abstract summary: Non-traditional approaches such as surrogate modeling using data-driven model order reduction are used to make high-fidelity models more widely available anyway.
We demonstrate the benefits of the surrogate modeling approach on a complex finite element model of a human upper-arm.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In recent decades, the main focus of computer modeling has been on supporting
the design and development of engineering prototyes, but it is now ubiquitous
in non-traditional areas such as medical rehabilitation. Conventional modeling
approaches like the finite element~(FE) method are computationally costly when
dealing with complex models, making them of limited use for purposes like
real-time simulation or deployment on low-end hardware, if the model at hand
cannot be simplified in a useful manner. Consequently, non-traditional
approaches such as surrogate modeling using data-driven model order reduction
are used to make complex high-fidelity models more widely available anyway.
They often involve a dimensionality reduction step, in which the
high-dimensional system state is transformed onto a low-dimensional subspace or
manifold, and a regression approach to capture the reduced system behavior.
While most publications focus on one dimensionality reduction, such as
principal component analysis~(PCA) (linear) or autoencoder (nonlinear), we
consider and compare PCA, kernel PCA, autoencoders, as well as variational
autoencoders for the approximation of a structural dynamical system. In detail,
we demonstrate the benefits of the surrogate modeling approach on a complex FE
model of a human upper-arm. We consider both the models deformation and the
internal stress as the two main quantities of interest in a FE context. By
doing so we are able to create a computationally low cost surrogate model which
captures the system behavior with high approximation quality and fast
evaluations.
Related papers
- SMILE: Zero-Shot Sparse Mixture of Low-Rank Experts Construction From Pre-Trained Foundation Models [85.67096251281191]
We present an innovative approach to model fusion called zero-shot Sparse MIxture of Low-rank Experts (SMILE) construction.
SMILE allows for the upscaling of source models into an MoE model without extra data or further training.
We conduct extensive experiments across diverse scenarios, such as image classification and text generation tasks, using full fine-tuning and LoRA fine-tuning.
arXiv Detail & Related papers (2024-08-19T17:32:15Z) - Structured Model Pruning for Efficient Inference in Computational Pathology [2.9687381456164004]
We develop a methodology for pruning the widely used U-Net-style architectures in biomedical imaging.
We empirically demonstrate that pruning can compress models by at least 70% with a negligible drop in performance.
arXiv Detail & Related papers (2024-04-12T22:05:01Z) - Model order reduction of deep structured state-space models: A system-theoretic approach [0.0]
deep structured state-space models offer high predictive performance.
The learned representations often suffer from excessively large model orders, which render them unsuitable for control design purposes.
We introduce two regularization terms which can be incorporated into the training loss for improved model order reduction.
The presented regularizers lead to advantages in terms of parsimonious representations and faster inference resulting from the reduced order models.
arXiv Detail & Related papers (2024-03-21T21:05:59Z) - Symplectic Autoencoders for Model Reduction of Hamiltonian Systems [0.0]
It is crucial to preserve the symplectic structure associated with the system in order to ensure long-term numerical stability.
We propose a new neural network architecture in the spirit of autoencoders, which are established tools for dimension reduction.
In order to train the network, a non-standard gradient descent approach is applied.
arXiv Detail & Related papers (2023-12-15T18:20:25Z) - Multi-fidelity reduced-order surrogate modeling [5.346062841242067]
We present a new data-driven strategy that combines dimensionality reduction with multi-fidelity neural network surrogates.
We show that the onset of instabilities and transients are well captured by this surrogate technique.
arXiv Detail & Related papers (2023-09-01T08:16:53Z) - When to Update Your Model: Constrained Model-based Reinforcement
Learning [50.74369835934703]
We propose a novel and general theoretical scheme for a non-decreasing performance guarantee of model-based RL (MBRL)
Our follow-up derived bounds reveal the relationship between model shifts and performance improvement.
A further example demonstrates that learning models from a dynamically-varying number of explorations benefit the eventual returns.
arXiv Detail & Related papers (2022-10-15T17:57:43Z) - Real-time Neural-MPC: Deep Learning Model Predictive Control for
Quadrotors and Agile Robotic Platforms [59.03426963238452]
We present Real-time Neural MPC, a framework to efficiently integrate large, complex neural network architectures as dynamics models within a model-predictive control pipeline.
We show the feasibility of our framework on real-world problems by reducing the positional tracking error by up to 82% when compared to state-of-the-art MPC approaches without neural network dynamics.
arXiv Detail & Related papers (2022-03-15T09:38:15Z) - Surrogate Modeling for Physical Systems with Preserved Properties and
Adjustable Tradeoffs [0.0]
We present a model-based and a data-driven strategy to generate surrogate models.
The latter generates interpretable surrogate models by fitting artificial relations to a presupposed topological structure.
Our framework is compatible with various spatial discretization schemes for distributed parameter models.
arXiv Detail & Related papers (2022-02-02T17:07:02Z) - Closed-form Continuous-Depth Models [99.40335716948101]
Continuous-depth neural models rely on advanced numerical differential equation solvers.
We present a new family of models, termed Closed-form Continuous-depth (CfC) networks, that are simple to describe and at least one order of magnitude faster.
arXiv Detail & Related papers (2021-06-25T22:08:51Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
Current autoencoder-based disentangled representation learning methods achieve disentanglement by penalizing the ( aggregate) posterior to encourage statistical independence of the latent factors.
We present a novel multi-stage modeling approach where the disentangled factors are first learned using a penalty-based disentangled representation learning method.
Then, the low-quality reconstruction is improved with another deep generative model that is trained to model the missing correlated latent variables.
arXiv Detail & Related papers (2020-10-25T18:51:15Z) - Hybrid modeling: Applications in real-time diagnosis [64.5040763067757]
We outline a novel hybrid modeling approach that combines machine learning inspired models and physics-based models.
We are using such models for real-time diagnosis applications.
arXiv Detail & Related papers (2020-03-04T00:44:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.