論文の概要: Efficient Match Pair Retrieval for Large-scale UAV Images via Graph
Indexed Global Descriptor
- arxiv url: http://arxiv.org/abs/2307.04520v1
- Date: Mon, 10 Jul 2023 12:41:55 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-11 13:12:55.943283
- Title: Efficient Match Pair Retrieval for Large-scale UAV Images via Graph
Indexed Global Descriptor
- Title(参考訳): グラフインデックス付きグローバルディスクリプタによる大規模uav画像の効率的なマッチペア検索
- Authors: San Jiang, Yichen Ma, Qingquan Li, Wanshou Jiang, Bingxuan Guo, Lelin
Li, Lizhe Wang
- Abstract要約: 本稿では,効率的なマッチングペア検索手法を提案し,並列SfM再構成のための統合ワークフローを実装した。
提案手法は3つの大規模データセットを用いて検証されている。
- 参考スコア(独自算出の注目度): 9.402103660431791
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: SfM (Structure from Motion) has been extensively used for UAV (Unmanned
Aerial Vehicle) image orientation. Its efficiency is directly influenced by
feature matching. Although image retrieval has been extensively used for match
pair selection, high computational costs are consumed due to a large number of
local features and the large size of the used codebook. Thus, this paper
proposes an efficient match pair retrieval method and implements an integrated
workflow for parallel SfM reconstruction. First, an individual codebook is
trained online by considering the redundancy of UAV images and local features,
which avoids the ambiguity of training codebooks from other datasets. Second,
local features of each image are aggregated into a single high-dimension global
descriptor through the VLAD (Vector of Locally Aggregated Descriptors)
aggregation by using the trained codebook, which remarkably reduces the number
of features and the burden of nearest neighbor searching in image indexing.
Third, the global descriptors are indexed via the HNSW (Hierarchical Navigable
Small World) based graph structure for the nearest neighbor searching. Match
pairs are then retrieved by using an adaptive threshold selection strategy and
utilized to create a view graph for divide-and-conquer based parallel SfM
reconstruction. Finally, the performance of the proposed solution has been
verified using three large-scale UAV datasets. The test results demonstrate
that the proposed solution accelerates match pair retrieval with a speedup
ratio ranging from 36 to 108 and improves the efficiency of SfM reconstruction
with competitive accuracy in both relative and absolute orientation.
- Abstract(参考訳): SfM(Structure from Motion)はUAV(Unmanned Aerial Vehicle)の画像オリエンテーションに広く使われている。
その効率は機能マッチングによって直接影響を受ける。
画像検索はマッチングペアの選択に広く用いられているが、多くの局所的な特徴と使用されるコードブックの大きさのために高い計算コストが消費される。
そこで本稿では,効率的なマッチングペア検索手法を提案し,並列sfm再構成のための統合ワークフローを実装した。
まず、個々のコードブックは、他のデータセットからのコードブックのトレーニングのあいまいさを避けるために、UAVイメージとローカル機能の冗長性を考慮して、オンラインでトレーニングされる。
第2に、訓練されたコードブックを用いて、各画像の局所的な特徴をVLAD(Vector of Locally Aggregated Descriptors)アグリゲーションを通じて、単一の高次元グローバルディスクリプタに集約し、画像インデックス作成における隣人探索の負担を著しく低減する。
第三に、グローバルディスクリプタは、HNSW (Hierarchical Navigable Small World) ベースのグラフ構造を介して、近隣の探索のためにインデックス化される。
次に、適応しきい値選択戦略を用いてマッチングペアを検索し、分割対並列SfM再構成のためのビューグラフを作成する。
最後に,提案手法の性能を3つの大規模UAVデータセットを用いて検証した。
提案手法は,36~108倍のスピードアップ比でマッチングペア検索を高速化し,相対方向と絶対方向の競合精度でsfm再構成の効率を向上させることを実証した。
関連論文リスト
- AIR-HLoc: Adaptive Retrieved Images Selection for Efficient Visual Localisation [8.789742514363777]
最先端の階層的ローカライゼーションパイプライン(HLOC)は2D-3D対応を確立するために画像検索(IR)を使用している。
本稿では,グローバルディスクリプタとローカルディスクリプタの関係について検討する。
本稿では,クエリのグローバルな記述子とデータベース内の記述子との類似性に基づいて$k$を調整する適応型戦略を提案する。
論文 参考訳(メタデータ) (2024-03-27T06:17:21Z) - Image2Sentence based Asymmetrical Zero-shot Composed Image Retrieval [92.13664084464514]
合成画像検索(CIR)の課題は,検索画像とユーザの意図を記述したテキストに基づいて画像を取得することである。
既存の手法は、CIRタスクにおける高度な大規模視覚言語(VL)モデルにおいて大きな進歩を遂げているが、それらは一般的に、モデルトレーニングのためのラベル付き三重項の欠如とリソース制限された環境への展開の困難という2つの大きな問題に悩まされている。
本稿では、VLモデルを利用して合成学習のためのラベルなし画像のみに依存する画像2Sentenceに基づく非対称ゼロショット合成画像検索(ISA)を提案する。
論文 参考訳(メタデータ) (2024-03-03T07:58:03Z) - Feature Decoupling-Recycling Network for Fast Interactive Segmentation [79.22497777645806]
近年のインタラクティブセグメンテーション手法では,入力としてソースイメージ,ユーザガイダンス,従来予測されていたマスクを反復的に取り込んでいる。
本稿では,本質的な相違点に基づいてモデリングコンポーネントを分離するFDRN(Feature Decoupling-Recycling Network)を提案する。
論文 参考訳(メタデータ) (2023-08-07T12:26:34Z) - Graph Convolution Based Efficient Re-Ranking for Visual Retrieval [29.804582207550478]
特徴を更新することで、初期検索結果を洗練する効率的な再ランク付け手法を提案する。
具体的には、グラフ畳み込みネットワーク(GCN)に基づく再ランク付けを再構成し、特徴伝搬による視覚的検索タスクのための新しいグラフ畳み込みベース再ランク付け(GCR)を提案する。
特に、平面GCRは、クロスカメラ検索のために拡張され、異なるカメラ間の親和性関係を活用するために、改良された特徴伝搬定式化が提示される。
論文 参考訳(メタデータ) (2023-06-15T00:28:08Z) - Parallel Structure from Motion for UAV Images via Weighted Connected
Dominating Set [5.17395782758526]
本稿では,クラスタマージのための大域的モデルを抽出し,効率よく正確なUAV画像配向を実現するために並列SfMソリューションを設計するアルゴリズムを提案する。
実験の結果,提案した並列SfMは17.4倍の効率向上と相対配向精度が得られることがわかった。
論文 参考訳(メタデータ) (2022-06-23T06:53:06Z) - Reuse your features: unifying retrieval and feature-metric alignment [3.845387441054033]
DRANは視覚的ローカライゼーションの3段階の機能を生成できる最初のネットワークである。
公開ベンチマークの挑戦的な条件下では、堅牢性と正確性の観点から競争性能を達成する。
論文 参考訳(メタデータ) (2022-04-13T10:42:00Z) - Fusing Local Similarities for Retrieval-based 3D Orientation Estimation
of Unseen Objects [70.49392581592089]
我々は,モノクロ画像から未確認物体の3次元配向を推定する作業に取り組む。
我々は検索ベースの戦略に従い、ネットワークがオブジェクト固有の特徴を学習するのを防ぐ。
また,LineMOD,LineMOD-Occluded,T-LESSのデータセットを用いた実験により,本手法が従来の手法よりもはるかに優れた一般化をもたらすことが示された。
論文 参考訳(メタデータ) (2022-03-16T08:53:00Z) - Combined Depth Space based Architecture Search For Person
Re-identification [70.86236888223569]
個人再識別(ReID)のための軽量で適切なネットワークの設計を目指しています。
本研究では,CDNetと呼ばれる効率的なネットワークアーキテクチャの探索に基づく,複合深さ空間(Componed Depth Space, CDS)と呼ばれる新しい検索空間を提案する。
そこで我々はTop-k Sample Search戦略という低コストの検索戦略を提案し、検索空間をフル活用し、局所的な最適結果のトラップを避ける。
論文 参考訳(メタデータ) (2021-04-09T02:40:01Z) - Thinking Fast and Slow: Efficient Text-to-Visual Retrieval with
Transformers [115.90778814368703]
目的は,大規模画像とビデオデータセットの言語検索である。
このタスクでは、独立してテキストとビジョンを共同埋め込み空間 a.k.a にマッピングする。
デュアルエンコーダは 検索スケールとして魅力的です
視覚テキスト変換器をクロスアテンションで使用する別のアプローチは、関節埋め込みよりも精度が大幅に向上する。
論文 参考訳(メタデータ) (2021-03-30T17:57:08Z) - Image Retrieval for Structure-from-Motion via Graph Convolutional
Network [13.040952255039702]
本稿では,グラフ畳み込みネットワーク(GCN)に基づく新しい検索手法を提案する。
問合せ画像を取り巻くサブグラフを入力データとして構築することにより、問合せ画像と重なり合う領域を持つか否かを学習可能なGCNを採用する。
実験により,本手法は高度にあいまいで重複したシーンの挑戦的データセットにおいて,極めて優れた性能を示すことが示された。
論文 参考訳(メタデータ) (2020-09-17T04:03:51Z) - High-Order Information Matters: Learning Relation and Topology for
Occluded Person Re-Identification [84.43394420267794]
本稿では,高次関係とトポロジ情報を識別的特徴とロバストなアライメントのために学習し,新しい枠組みを提案する。
我々のフレームワークはOccluded-Dukeデータセットで最先端の6.5%mAPスコアを大幅に上回っている。
論文 参考訳(メタデータ) (2020-03-18T12:18:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。