Compressive single-pixel read-out of single-photon quantum walks on a
polymer photonic chip
- URL: http://arxiv.org/abs/2307.05031v1
- Date: Tue, 11 Jul 2023 06:07:39 GMT
- Title: Compressive single-pixel read-out of single-photon quantum walks on a
polymer photonic chip
- Authors: Aveek Chandra, Shuin Jian Wu, Angelina Frank and James A. Grieve
- Abstract summary: Quantum photonic devices operating in the single photon regime require the detection and characterization of quantum states of light.
Chip-scale, waveguide-based devices are a key enabling technology for increasing the scale and complexity of such systems.
We demonstrate a novel, inexpensive method to efficiently image and route individual output modes of a polymer photonic chip, where single photons undergo a quantum walk.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum photonic devices operating in the single photon regime require the
detection and characterization of quantum states of light. Chip-scale,
waveguide-based devices are a key enabling technology for increasing the scale
and complexity of such systems. Collecting single photons from multiple outputs
at the end-face of such a chip is a core task that is frequently non-trivial,
especially when output ports are densely spaced. We demonstrate a novel,
inexpensive method to efficiently image and route individual output modes of a
polymer photonic chip, where single photons undergo a quantum walk. The method
makes use of single-pixel imaging (SPI) with a digital micromirror device
(DMD). By implementing a series of masks on the DMD and collecting the
reflected signal into single-photon detectors, the spatial distribution of the
single photons can be reconstructed with high accuracy. We also demonstrate the
feasibility of optimization strategies based on compressive sensing.
Related papers
- All-optical modulation with single-photons using electron avalanche [69.65384453064829]
We demonstrate all-optical modulation using a beam with single-photon intensity.
Our approach opens up the possibility of terahertz-speed optical switching at the single-photon level.
arXiv Detail & Related papers (2023-12-18T20:14:15Z) - Compact Chirped Fiber Bragg Gratings for Single-Photon Generation from
Quantum Dots [0.0]
We present a compact, robust, and high-efficiency alternative for chirped pulse excitation of solid-state quantum emitters.
Our simple plug-and-play module consists of chirped fiber Bragg gratings fabricated via femtosecond inscription.
arXiv Detail & Related papers (2023-06-20T16:02:28Z) - Tunable quantum emitters on large-scale foundry silicon photonics [0.6165122427320179]
Integration of atomic quantum systems with single-emitter tunability remains an open challenge.
Here, we overcome this barrier through the hybrid integration of multiple InAs/InP microchiplets containing high-brightness infrared semiconductor quantum dot single photon emitters.
We achieve single photon emission via resonance fluorescence and scalable emission wavelength tunability through an electrically controlled non-volatile memory.
arXiv Detail & Related papers (2023-06-10T15:04:30Z) - High-dimensional quantum correlation measurements with an adaptively
gated hybrid single-photon camera [58.720142291102135]
We propose an adaptively-gated hybrid intensified camera (HIC) that combines a high spatial resolution sensor and a high temporal resolution detector.
With a spatial resolution of nearly 9 megapixels and nanosecond temporal resolution, this system allows for the realization of previously infeasible quantum optics experiments.
arXiv Detail & Related papers (2023-05-25T16:59:27Z) - Programmable multi-photon quantum interference in a single spatial mode [0.0]
We show a resource-efficient architecture for multi-photon processing based on time-bin encoding in a single spatial mode.
We employ an efficient quantum dot single-photon source, and a fast programmable time-bin interferometer, to observe the interference of up to 8 photons in 16 modes.
arXiv Detail & Related papers (2023-05-18T17:46:38Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - On-chip generation and dynamic piezo-optomechanical rotation of single
photons [0.0]
integrated quantum dots (QDs), a Mach-Zehnder interferometer (MZI) and surface acoustic wave (SAW) transducers directly fabricated on a monolithic semiconductor platform.
We demonstrate on-chip single photon generation by the QD and its sub-nanosecond dynamic on-chip control.
In the MZI, SAWs imprint a time-dependent optical phase and modulate the qubit rotation to the output superposition state. This enables dynamic single photon routing with frequencies exceeding one gigahertz.
arXiv Detail & Related papers (2022-02-21T12:32:37Z) - Single photon emission from individual nanophotonic-integrated colloidal
quantum dots [45.82374977939355]
Solution processible colloidal quantum dots hold great promise for realizing single-photon sources embedded into scalable quantum technology platforms.
We report on integrating individual colloidal core-shell quantum dots into a nanophotonic network that allows for excitation and efficient collection of single-photons via separate waveguide channels.
arXiv Detail & Related papers (2021-04-23T22:14:17Z) - Near-ideal spontaneous photon sources in silicon quantum photonics [55.41644538483948]
Integrated photonics is a robust platform for quantum information processing.
Sources of single photons that are highly indistinguishable and pure, that are either near-deterministic or heralded with high efficiency, have been elusive.
Here, we demonstrate on-chip photon sources that simultaneously meet each of these requirements.
arXiv Detail & Related papers (2020-05-19T16:46:44Z) - Quantum metamaterial for nondestructive microwave photon counting [52.77024349608834]
We introduce a single-photon detector design operating in the microwave domain based on a weakly nonlinear metamaterial.
We show that the single-photon detection fidelity increases with the length of the metamaterial to approach one at experimentally realistic lengths.
In stark contrast to conventional photon detectors operating in the optical domain, the photon is not destroyed by the detection and the photon wavepacket is minimally disturbed.
arXiv Detail & Related papers (2020-05-13T18:00:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.