Quantum metamaterial for nondestructive microwave photon counting
- URL: http://arxiv.org/abs/2005.06483v1
- Date: Wed, 13 May 2020 18:00:03 GMT
- Title: Quantum metamaterial for nondestructive microwave photon counting
- Authors: Arne L. Grimsmo, Baptiste Royer, John Mark Kreikebaum, Yufeng Ye,
Kevin O'Brien, Irfan Siddiqi, Alexandre Blais
- Abstract summary: We introduce a single-photon detector design operating in the microwave domain based on a weakly nonlinear metamaterial.
We show that the single-photon detection fidelity increases with the length of the metamaterial to approach one at experimentally realistic lengths.
In stark contrast to conventional photon detectors operating in the optical domain, the photon is not destroyed by the detection and the photon wavepacket is minimally disturbed.
- Score: 52.77024349608834
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Detecting traveling photons is an essential primitive for many quantum
information processing tasks. We introduce a single-photon detector design
operating in the microwave domain, based on a weakly nonlinear metamaterial
where the nonlinearity is provided by a large number of Josephson junctions.
The combination of weak nonlinearity and large spatial extent circumvents
well-known obstacles limiting approaches based on a localized Kerr medium.
Using numerical many-body simulations we show that the single-photon detection
fidelity increases with the length of the metamaterial to approach one at
experimentally realistic lengths. A remarkable feature of the detector is that
the metamaterial approach allows for a large detection bandwidth. In stark
contrast to conventional photon detectors operating in the optical domain, the
photon is not destroyed by the detection and the photon wavepacket is minimally
disturbed. The detector design we introduce offers new possibilities for
quantum information processing, quantum optics and metrology in the microwave
frequency domain.
Related papers
- Quantum Imaging Using Spatially Entangled Photon Pairs from a Nonlinear Metasurface [0.4188114563181615]
metasurfaces with subwavelength thickness were recently established as versatile platforms for the enhanced and tailorable generation of entangled photon pairs.
Here, we demonstrate the unique benefits and practical potential of nonlinear metasurfaces for quantum imaging at infrared wavelengths.
We reconstruct the images of 2D objects using just a 1D detector array in the idler path and a bucket detector in the signal path, by recording the dependencies of photon coincidences on the pump wavelength.
arXiv Detail & Related papers (2024-08-06T02:25:34Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - On-chip quantum information processing with distinguishable photons [55.41644538483948]
Multi-photon interference is at the heart of photonic quantum technologies.
Here, we experimentally demonstrate that detection can be implemented with a temporal resolution sufficient to interfere photons detuned on the scales necessary for cavity-based integrated photon sources.
We show how time-resolved detection of non-ideal photons can be used to improve the fidelity of an entangling operation and to mitigate the reduction of computational complexity in boson sampling experiments.
arXiv Detail & Related papers (2022-10-14T18:16:49Z) - Few-photon transport via a multimode nonlinear cavity: theory and
applications [0.0]
We study few-photon transport via a waveguide-coupled multimode optical cavity with second-order bulk nonlinearity.
Our results might lead to significant applications of quantum photonic circuits in all-optical quantum information processing and quantum network protocols.
arXiv Detail & Related papers (2022-09-08T15:28:05Z) - Resolution of 100 photons and quantum generation of unbiased random
numbers [0.0]
Quantum detection of light is mostly relegated to the microscale.
The ability to perform measurements to resolve photon numbers is highly desirable for a variety of quantum information applications.
In this work, we extend photon measurement into the mesoscopic regime by implementing a detection scheme based on multiplexing highly quantum-efficient transition-edge sensors.
arXiv Detail & Related papers (2022-05-02T21:34:01Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - Topologically Protecting Squeezed Light on a Photonic Chip [58.71663911863411]
Integrated photonics offers an elegant way to increase the nonlinearity by confining light strictly inside the waveguide.
We experimentally demonstrate the topologically protected nonlinear process of spontaneous four-wave mixing enabling the generation of squeezed light on a silica chip.
arXiv Detail & Related papers (2021-06-14T13:39:46Z) - Conditional preparation of non-Gaussian quantum optical states by
mesoscopic measurement [62.997667081978825]
Non-Gaussian states of an optical field are important as a proposed resource in quantum information applications.
We propose a novel approach involving displacement of the ancilla field into the regime where mesoscopic detectors can be used.
We conclude that states with strong Wigner negativity can be prepared at high rates by this technique under experimentally attainable conditions.
arXiv Detail & Related papers (2021-03-29T16:59:18Z) - Inelastic scattering of a photon by a quantum phase-slip [0.0]
We show that a quantum phase-slip fluctuation in high-impedance superconducting waveguides can split a single microwave photon into a large number of lower-energy photons.
The measured decay rates are explained without adjustable parameters in the framework of a new model of a quantum impurity in a Luttinger liquid.
arXiv Detail & Related papers (2020-10-05T15:35:21Z) - Topological photon pairs in a superconducting quantum metamaterial [44.62475518267084]
We use an array of superconducting qubits to engineer a nontrivial quantum metamaterial.
By performing microwave spectroscopy of the fabricated array, we experimentally observe the spectrum of elementary excitations.
We find not only the single-photon topological states but also the bands of exotic bound photon pairs arising due to the inherent anharmonicity of qubits.
arXiv Detail & Related papers (2020-06-23T07:04:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.