Number Systems for Deep Neural Network Architectures: A Survey
- URL: http://arxiv.org/abs/2307.05035v1
- Date: Tue, 11 Jul 2023 06:19:25 GMT
- Title: Number Systems for Deep Neural Network Architectures: A Survey
- Authors: Ghada Alsuhli, Vasileios Sakellariou, Hani Saleh, Mahmoud Al-Qutayri,
Baker Mohammad, Thanos Stouraitis
- Abstract summary: Deep neural networks (DNNs) have become an enabling component for a myriad of artificial intelligence applications.
DNNs have shown sometimes superior performance, even compared to humans, in cases such as self-driving, health applications, etc.
- Score: 1.4260605984981944
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep neural networks (DNNs) have become an enabling component for a myriad of
artificial intelligence applications. DNNs have shown sometimes superior
performance, even compared to humans, in cases such as self-driving, health
applications, etc. Because of their computational complexity, deploying DNNs in
resource-constrained devices still faces many challenges related to computing
complexity, energy efficiency, latency, and cost. To this end, several research
directions are being pursued by both academia and industry to accelerate and
efficiently implement DNNs. One important direction is determining the
appropriate data representation for the massive amount of data involved in DNN
processing. Using conventional number systems has been found to be sub-optimal
for DNNs. Alternatively, a great body of research focuses on exploring suitable
number systems. This article aims to provide a comprehensive survey and
discussion about alternative number systems for more efficient representations
of DNN data. Various number systems (conventional/unconventional) exploited for
DNNs are discussed. The impact of these number systems on the performance and
hardware design of DNNs is considered. In addition, this paper highlights the
challenges associated with each number system and various solutions that are
proposed for addressing them. The reader will be able to understand the
importance of an efficient number system for DNN, learn about the widely used
number systems for DNN, understand the trade-offs between various number
systems, and consider various design aspects that affect the impact of number
systems on DNN performance. In addition, the recent trends and related research
opportunities will be highlighted
Related papers
- MatchNAS: Optimizing Edge AI in Sparse-Label Data Contexts via
Automating Deep Neural Network Porting for Mobile Deployment [54.77943671991863]
MatchNAS is a novel scheme for porting Deep Neural Networks to mobile devices.
We optimise a large network family using both labelled and unlabelled data.
We then automatically search for tailored networks for different hardware platforms.
arXiv Detail & Related papers (2024-02-21T04:43:12Z) - A Survey on Deep Neural Network Partition over Cloud, Edge and End
Devices [6.248548718574856]
Deep neural network (DNN) partition is a research problem that involves splitting a DNN into multiple parts and offloading them to specific locations.
This paper provides a comprehensive survey on the recent advances and challenges in DNN partition approaches over the cloud, edge, and end devices.
arXiv Detail & Related papers (2023-04-20T00:17:27Z) - Distributed Graph Neural Network Training: A Survey [51.77035975191926]
Graph neural networks (GNNs) are a type of deep learning models that are trained on graphs and have been successfully applied in various domains.
Despite the effectiveness of GNNs, it is still challenging for GNNs to efficiently scale to large graphs.
As a remedy, distributed computing becomes a promising solution of training large-scale GNNs.
arXiv Detail & Related papers (2022-11-01T01:57:00Z) - Revisiting PINNs: Generative Adversarial Physics-informed Neural
Networks and Point-weighting Method [70.19159220248805]
Physics-informed neural networks (PINNs) provide a deep learning framework for numerically solving partial differential equations (PDEs)
We propose the generative adversarial neural network (GA-PINN), which integrates the generative adversarial (GA) mechanism with the structure of PINNs.
Inspired from the weighting strategy of the Adaboost method, we then introduce a point-weighting (PW) method to improve the training efficiency of PINNs.
arXiv Detail & Related papers (2022-05-18T06:50:44Z) - Hardware Approximate Techniques for Deep Neural Network Accelerators: A
Survey [4.856755747052137]
Deep Neural Networks (DNNs) are very popular because of their high performance in various cognitive tasks in Machine Learning (ML)
Recent advancements in DNNs have brought beyond human accuracy in many tasks, but at the cost of high computational complexity.
This article provides a comprehensive survey and analysis of hardware approximation techniques for DNN accelerators.
arXiv Detail & Related papers (2022-03-16T16:33:13Z) - SyReNN: A Tool for Analyzing Deep Neural Networks [8.55884254206878]
Deep Neural Networks (DNNs) are rapidly gaining popularity in a variety of important domains.
This paper introduces SyReNN, a tool for understanding and analyzing a DNN by computing its symbolic representation.
arXiv Detail & Related papers (2021-01-09T00:27:23Z) - Deep Serial Number: Computational Watermarking for DNN Intellectual
Property Protection [53.40245698216239]
DSN (Deep Serial Number) is a watermarking algorithm designed specifically for deep neural networks (DNNs)
Inspired by serial numbers in safeguarding conventional software IP, we propose the first implementation of serial number embedding within DNNs.
arXiv Detail & Related papers (2020-11-17T21:42:40Z) - Boosting Deep Neural Networks with Geometrical Prior Knowledge: A Survey [77.99182201815763]
Deep Neural Networks (DNNs) achieve state-of-the-art results in many different problem settings.
DNNs are often treated as black box systems, which complicates their evaluation and validation.
One promising field, inspired by the success of convolutional neural networks (CNNs) in computer vision tasks, is to incorporate knowledge about symmetric geometrical transformations.
arXiv Detail & Related papers (2020-06-30T14:56:05Z) - CodNN -- Robust Neural Networks From Coded Classification [27.38642191854458]
Deep Neural Networks (DNNs) are a revolutionary force in the ongoing information revolution.
DNNs are highly sensitive to noise, whether adversarial or random.
This poses a fundamental challenge for hardware implementations of DNNs, and for their deployment in critical applications such as autonomous driving.
By our approach, either the data or internal layers of the DNN are coded with error correcting codes, and successful computation under noise is guaranteed.
arXiv Detail & Related papers (2020-04-22T17:07:15Z) - GraN: An Efficient Gradient-Norm Based Detector for Adversarial and
Misclassified Examples [77.99182201815763]
Deep neural networks (DNNs) are vulnerable to adversarial examples and other data perturbations.
GraN is a time- and parameter-efficient method that is easily adaptable to any DNN.
GraN achieves state-of-the-art performance on numerous problem set-ups.
arXiv Detail & Related papers (2020-04-20T10:09:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.