論文の概要: Tree-Based Scenario Classification: A Formal Framework for Coverage
Analysis on Test Drives of Autonomous Vehicles
- arxiv url: http://arxiv.org/abs/2307.05106v1
- Date: Tue, 11 Jul 2023 08:30:57 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-23 17:53:51.121727
- Title: Tree-Based Scenario Classification: A Formal Framework for Coverage
Analysis on Test Drives of Autonomous Vehicles
- Title(参考訳): ツリーベースシナリオ分類:自動運転車のテストドライブのカバレッジ分析のための形式的フレームワーク
- Authors: Till Schallau, Stefan Naujokat, Fiona Kullmann, Falk Howar
- Abstract要約: シナリオベースのテストでは、関連する(運転)シナリオがテストの基礎になります。
シナリオの集合を分類し、記録されたテストドライブにおけるこれらのシナリオのカバレッジを測定するというオープンな課題に対処する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Scenario-based testing is envisioned as a key approach for the safety
assurance of autonomous vehicles. In scenario-based testing, relevant (driving)
scenarios are the basis of tests. Many recent works focus on specification,
variation, generation and execution of individual scenarios. In this work, we
address the open challenges of classifying sets of scenarios and measuring
coverage of theses scenarios in recorded test drives. Technically, we define
logic-based classifiers that compute features of scenarios on complex data
streams and combine these classifiers into feature trees that describe sets of
scenarios. We demonstrate the expressiveness and effectiveness of our approach
by defining a scenario classifier for urban driving and evaluating it on data
recorded from simulations.
- Abstract(参考訳): シナリオベースのテストは、自動運転車の安全性を保証するための重要なアプローチとして考えられている。
シナリオベースのテストでは、関連する(運転)シナリオがテストの基礎となる。
最近の多くの作品は、個々のシナリオの仕様、バリエーション、生成、実行に焦点を当てている。
本研究では,一連のシナリオを分類し,記録されたテストドライブにおけるこれらのシナリオのカバレッジを測定するというオープンな課題に対処する。
技術的には、複雑なデータストリーム上のシナリオの特徴を計算するロジックベースの分類器を定義し、これらの分類器をシナリオの集合を記述する機能木に組み合わせます。
都市交通のシナリオ分類器を定義し,シミュレーションから記録したデータに基づいて評価することで,提案手法の表現性と有効性を示す。
関連論文リスト
- Towards a Completeness Argumentation for Scenario Concepts [0.2184775414778289]
本稿では,目標構造表記を用いたシナリオ概念の完全性について論じる。
シナリオの概念とinDデータセットにメソッドを適用して、ユーザビリティを証明する。
論文 参考訳(メタデータ) (2024-04-02T13:29:38Z) - Generative Judge for Evaluating Alignment [84.09815387884753]
本稿では,これらの課題に対処するために,13Bパラメータを持つ生成判断器Auto-Jを提案する。
我々のモデルは,大規模な実環境シナリオ下でのユーザクエリとLLM生成応答に基づいて訓練されている。
実験的に、Auto-Jはオープンソースモデルとクローズドソースモデルの両方を含む、強力なライバルのシリーズを上回っている。
論文 参考訳(メタデータ) (2023-10-09T07:27:15Z) - Clustering-based Criticality Analysis for Testing of Automated Driving
Systems [0.18416014644193066]
本稿では,1つの論理シナリオから具体的なシナリオをクラスタリングすることで設定したシナリオを削減するという目標に焦点をあてる。
クラスタリング技術を利用することで、冗長で非関心なシナリオを識別および排除することが可能になり、典型的なシナリオセットとなる。
論文 参考訳(メタデータ) (2023-06-22T08:36:20Z) - UMSE: Unified Multi-scenario Summarization Evaluation [52.60867881867428]
要約品質評価は、テキスト要約における非自明なタスクである。
統一多シナリオ要約評価モデル(UMSE)を提案する。
UMSEは3つの評価シナリオで使用できる能力に係わる最初の統合要約評価フレームワークである。
論文 参考訳(メタデータ) (2023-05-26T12:54:44Z) - Robust Continual Test-time Adaptation: Instance-aware BN and
Prediction-balanced Memory [58.72445309519892]
テストデータストリーム以外のデータストリームに対して堅牢な新しいテスト時間適応方式を提案する。
a)分布外サンプルの正規化を修正するIABN(Instance-Aware Batch Normalization)と、(b)クラスバランスのない方法で非i.d.ストリームからのデータストリームをシミュレートするPBRS(Predict- Balanced Reservoir Sampling)である。
論文 参考訳(メタデータ) (2022-08-10T03:05:46Z) - Generating Useful Accident-Prone Driving Scenarios via a Learned Traffic
Prior [135.78858513845233]
STRIVEは、特定のプランナーが衝突のような望ましくない振る舞いを発生させるような、困難なシナリオを自動的に生成する手法である。
シナリオの妥当性を維持するために、キーとなるアイデアは、グラフベースの条件付きVAEという形で、学習した交通運動モデルを活用することである。
その後の最適化は、シナリオの"解決"を見つけるために使用され、与えられたプランナーを改善するのに有効である。
論文 参考訳(メタデータ) (2021-12-09T18:03:27Z) - Realistic simulation of users for IT systems in cyber ranges [63.20765930558542]
ユーザアクティビティを生成するために,外部エージェントを用いて各マシンを計測する。
このエージェントは、決定論的および深層学習に基づく手法を組み合わせて、異なる環境に適応する。
また,会話や文書の作成を容易にする条件付きテキスト生成モデルを提案する。
論文 参考訳(メタデータ) (2021-11-23T10:53:29Z) - Addressing the IEEE AV Test Challenge with Scenic and VerifAI [10.221093591444731]
本稿では,IEEE AVテストチャレンジのシミュレーションにおいて,自律走行車(AV)のテストに対する我々の公式なアプローチを要約する。
我々は,知的サイバー物理システムのための形式駆動型シミュレーションに関するこれまでの研究を生かした,系統的なテストフレームワークを実証する。
論文 参考訳(メタデータ) (2021-08-20T04:51:27Z) - Generating and Characterizing Scenarios for Safety Testing of Autonomous
Vehicles [86.9067793493874]
最先端運転シミュレータを用いて,テストシナリオを特徴付け,生成するための効率的なメカニズムを提案する。
次世代シミュレーション(NGSIM)プロジェクトにおける実運転データの特徴付けに本手法を用いる。
事故回避の複雑さに基づいてメトリクスを定義してシナリオをランク付けし、事故発生の可能性を最小限に抑えるための洞察を提供します。
論文 参考訳(メタデータ) (2021-03-12T17:00:23Z) - A Scenario-Based Development Framework for Autonomous Driving [0.0]
本稿では,自動運転車のシナリオベーステスト・開発技術の進歩について概説する。
本稿では,シナリオの定義,シナリオの要素,シナリオのデータソース,シナリオデータの処理方法,シナリオベースのVモデルを提案する。
論文 参考訳(メタデータ) (2020-11-03T03:06:48Z) - Real-World Scenario Mining for the Assessment of Automated Vehicles [12.962830182937035]
2段階のアプローチで実世界のデータからシナリオをキャプチャする手法を提案する。
この手法は特定のシナリオには当てはまらないため、様々なシナリオに適用することができる。
論文 参考訳(メタデータ) (2020-05-31T10:10:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。