論文の概要: Tests4Py: A Benchmark for System Testing
- arxiv url: http://arxiv.org/abs/2307.05147v2
- Date: Tue, 14 May 2024 12:34:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-15 20:00:15.036412
- Title: Tests4Py: A Benchmark for System Testing
- Title(参考訳): Tests4Py: システムテストのベンチマーク
- Authors: Marius Smytzek, Martin Eberlein, Batuhan Serce, Lars Grunske, Andreas Zeller,
- Abstract要約: Tests4Pyベンチマークには、実世界の7つのPythonアプリケーションから73のバグと、サンプルプログラムから6のバグが含まれている。
Tests4Pyの各科目は機能的正当性を検証するためのオラクルを備えており、システムおよび単体テスト生成をサポートする。
- 参考スコア(独自算出の注目度): 11.051969638361012
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Benchmarks are among the main drivers of progress in software engineering research. However, many current benchmarks are limited by inadequate system oracles and sparse unit tests. Our Tests4Py benchmark, derived from the BugsInPy benchmark, addresses these limitations. It includes 73 bugs from seven real-world Python applications and six bugs from example programs. Each subject in Tests4Py is equipped with an oracle for verifying functional correctness and supports both system and unit test generation. This allows for comprehensive qualitative studies and extensive evaluations, making Tests4Py a cutting-edge benchmark for research in test generation, debugging, and automatic program repair.
- Abstract(参考訳): ベンチマークは、ソフトウェア工学研究の進歩の主要な要因の一つである。
しかし、現在のベンチマークの多くは、不適切なシステムオーラクルとスパース単体テストによって制限されている。
当社のTests4Pyベンチマークは、BugsInPyベンチマークから派生したもので、これらの制限に対処しています。
現実世界の7つのPythonアプリケーションから73のバグと、サンプルプログラムから6のバグが含まれている。
Tests4Pyの各科目は機能的正当性を検証するためのオラクルを備えており、システムおよび単体テスト生成をサポートする。
これにより、包括的な質的研究と広範な評価が可能になり、Tests4Pyはテスト生成、デバッグ、自動プログラム修復の研究のための最先端のベンチマークとなる。
関連論文リスト
- Touchstone Benchmark: Are We on the Right Way for Evaluating AI Algorithms for Medical Segmentation? [90.30635552818875]
9種類の腹部臓器の大規模共同セグメント化ベンチマークであるTouchstoneを報告する。
このベンチマークは、世界中の76の病院から5,195回のCTスキャンと、11の病院から5,903回のCTスキャンに基づいています。
私たちは19のAIアルゴリズムの発明者14人を招待してアルゴリズムをトレーニングしましたが、私たちのチームは第三者として、3つのテストセットでこれらのアルゴリズムを独立して評価しました。
論文 参考訳(メタデータ) (2024-11-06T05:09:34Z) - TestGenEval: A Real World Unit Test Generation and Test Completion Benchmark [24.14654309612826]
TestGenEvalは、1,210のコードから68,647のテストと、11の保守されたPythonリポジトリにまたがるテストファイルペアで構成されている。
初期テストのオーサリング、テストスイートの補完、コードカバレッジの改善をカバーしている。
パラメータは7Bから405Bまで様々である。
論文 参考訳(メタデータ) (2024-10-01T14:47:05Z) - Multi-language Unit Test Generation using LLMs [6.259245181881262]
静的解析を組み込んだジェネリックパイプラインを記述し,コンパイル可能な高カバレッジテストケースの生成においてLCMをガイドする。
パイプラインをさまざまなプログラミング言語、特にJavaとPython、そして環境モックを必要とする複雑なソフトウェアに適用する方法を示します。
以上の結果から,静的解析によって導かれるLCMベースのテスト生成は,最新のテスト生成技術と競合し,さらに性能も向上することが示された。
論文 参考訳(メタデータ) (2024-09-04T21:46:18Z) - A System for Automated Unit Test Generation Using Large Language Models and Assessment of Generated Test Suites [1.4563527353943984]
大規模言語モデル(LLM)はソフトウェア開発の様々な側面に適用されている。
Javaプロジェクトのテストスイートを生成する自動化システムであるAgoneTestを紹介します。
論文 参考訳(メタデータ) (2024-08-14T23:02:16Z) - Harnessing the Power of LLMs: Automating Unit Test Generation for High-Performance Computing [7.3166218350585135]
ユニットテストは、品質を保証するために、ソフトウェア工学において不可欠です。
並列処理や高性能計算ソフトウェア、特に科学応用では広く使われていない。
本稿では,このようなソフトウェアを対象としたユニットテストの自動生成手法を提案する。
論文 参考訳(メタデータ) (2024-07-06T22:45:55Z) - Introducing v0.5 of the AI Safety Benchmark from MLCommons [101.98401637778638]
本稿では,MLCommons AI Safety Working Groupが作成したAI Safety Benchmarkのv0.5を紹介する。
このベンチマークは、チャットチューニング言語モデルを使用するAIシステムの安全性リスクを評価するように設計されている。
論文 参考訳(メタデータ) (2024-04-18T15:01:00Z) - Observation-based unit test generation at Meta [52.4716552057909]
TestGenは、アプリケーション実行中に観察された複雑なオブジェクトのシリアライズされた観察から作られたユニットテストを自動的に生成する。
TestGenは518のテストを本番環境に投入し、継続的統合で9,617,349回実行され、5,702の障害が見つかった。
評価の結果,信頼性の高い4,361のエンドツーエンドテストから,少なくとも86%のクラスでテストを生成することができた。
論文 参考訳(メタデータ) (2024-02-09T00:34:39Z) - ARB: Advanced Reasoning Benchmark for Large Language Models [94.37521840642141]
複数の分野における先進的推論問題からなる新しいベンチマークであるABBを紹介する。
ARBのサブセットとして、高度なシンボリック推論とドメイン知識を必要とする数学と物理学の問題を紹介する。
我々は, GPT-4 や Claude on ARB などの最近のモデルを評価し, より要求の高いタスクにおいて, 現在のモデルが50%以下であることを示す。
論文 参考訳(メタデータ) (2023-07-25T17:55:19Z) - Perception Test: A Diagnostic Benchmark for Multimodal Video Models [78.64546291816117]
本稿では,事前学習したマルチモーダルモデルの知覚と推論能力を評価するために,新しいマルチモーダルビデオベンチマークを提案する。
知覚テストは、スキル(記憶、抽象化、物理学、セマンティックス)と、ビデオ、オーディオ、テキストモダリティ間の推論(記述的、説明的、予測的、反ファクト的)のタイプに焦点を当てている。
このベンチマークは、ゼロショット/少数ショットまたは限定的な微調整方式で、転送機能の事前訓練されたモデルを探索する。
論文 参考訳(メタデータ) (2023-05-23T07:54:37Z) - SUPERNOVA: Automating Test Selection and Defect Prevention in AAA Video
Games Using Risk Based Testing and Machine Learning [62.997667081978825]
従来の手法では、成長するソフトウェアシステムではスケールできないため、ビデオゲームのテストはますます難しいタスクになります。
自動化ハブとして機能しながら,テスト選択と欠陥防止を行うシステム SUPERNOVA を提案する。
この直接的な影響は、未公表のスポーツゲームタイトルの55%以上のテスト時間を減らすことが観察されている。
論文 参考訳(メタデータ) (2022-03-10T00:47:46Z) - Automated Support for Unit Test Generation: A Tutorial Book Chapter [21.716667622896193]
単体テストは、システムの他の部分と独立してテストできる最小のコードセグメントをテストする段階である。
単体テストは通常実行可能なコードとして書かれ、Pythonのpytestのような単体テストフレームワークが提供する形式で書かれる。
本章では,検索に基づく単体テスト生成の概念を紹介する。
論文 参考訳(メタデータ) (2021-10-26T11:13:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。