Quantum-enhanced Electrometer based on Microwave-dressed Rydberg Atoms
- URL: http://arxiv.org/abs/2307.05183v1
- Date: Tue, 11 Jul 2023 11:37:37 GMT
- Title: Quantum-enhanced Electrometer based on Microwave-dressed Rydberg Atoms
- Authors: Shuhe Wu, Dong Zhang, Zhengchun Li, Minwei Shi, Peiyu Yang, Jinxian
Guo, Wei Du, Guzhi Bao and Weiping Zhang
- Abstract summary: We exploit entanglement in a microwave-dressed Rydberg electrometer to suppress the fluctuation of noise.
Results show a sensitivity enhancement beating the shot noise limit in both cold and hot atom schemes.
- Score: 6.207016472707687
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Rydberg atoms have been shown remarkable performance in sensing microwave
field. The sensitivity of such an electrometer based on optical readout of
atomic ensemble has been demonstrated to approach the photon-shot-noise limit.
However, the sensitivity can not be promoted infinitely by increasing the power
of probe light due to the increased collision rates and power broadening.
Compared with classical light, the use of quantum light may lead to a better
sensitivity with lower number of photons. In this paper, we exploit
entanglement in a microwave-dressed Rydberg electrometer to suppress the
fluctuation of noise. The results show a sensitivity enhancement beating the
shot noise limit in both cold and hot atom schemes. Through optimizing the
transmission of optical readout, our quantum advantage can be maintained with
different absorptive index of atomic vapor, which makes it possible to apply
quantum light source in the absorptive electrometer.
Related papers
- Cavity-Quantum Electrodynamics with Moiré Flatband Photonic Crystals [35.119260614523256]
A quantum dot can be tuned by a factor of 40, ranging from 42 ps to 1692 ps, which is attributed to strong Purcell enhancement and Purcell inhibition effects.
Our findings pave the way for moir'e flatband cavity-enhanced quantum light sources, quantum optical switches, and quantum nodes for quantum internet applications.
arXiv Detail & Related papers (2024-11-25T18:52:11Z) - Tunable photon scattering by an atom dimer coupled to a band edge of a photonic crystal waveguide [0.0]
Quantum emitters trapped near photonic crystal waveguides have emerged as an exciting platform for realizing novel quantum matter-light interfaces.
We study tunable photon scattering in a photonic crystal waveguide coupled to an atom dimer with an arbitrary spatial separation.
arXiv Detail & Related papers (2024-09-30T13:57:58Z) - Site-Controlled Purcell-Induced Bright Single Photon Emitters in Hexagonal Boron Nitride [62.170141783047974]
Single photon emitters hosted in hexagonal boron nitride (hBN) are essential building blocks for quantum photonic technologies that operate at room temperature.
We experimentally demonstrate large-area arrays of plasmonic nanoresonators for Purcell-induced site-controlled SPEs.
Our results offer arrays of bright, heterogeneously integrated quantum light sources, paving the way for robust and scalable quantum information systems.
arXiv Detail & Related papers (2024-05-03T23:02:30Z) - Improving Kerr QND measurement sensitivity via squeezed light [0.0]
We show that by using a squeezed quantum state of the probe beam and the anti-squeezing beam at the output of the microresonator, it is possible to reduce the measurement imprecision by about one order of magnitude.
The resulting sensitivity allows to generate and verify multi-photon non-Gaussian quantum states of light.
arXiv Detail & Related papers (2022-10-03T12:20:46Z) - Quantum-limited millimeter wave to optical transduction [50.663540427505616]
Long distance transmission of quantum information is a central ingredient of distributed quantum information processors.
Current approaches to transduction employ solid state links between electrical and optical domains.
We demonstrate quantum-limited transduction of millimeter-wave (mmwave) photons into optical photons using cold $85$Rb atoms as the transducer.
arXiv Detail & Related papers (2022-07-20T18:04:26Z) - High-efficiency microwave-optical quantum transduction based on a cavity
electro-optic superconducting system with long coherence time [52.77024349608834]
Frequency conversion between microwave and optical photons is a key enabling technology to create links between superconducting quantum processors.
We propose a microwave-optical platform based on long-coherence-time superconducting radio-frequency (SRF) cavities.
We show that the fidelity of heralded entanglement generation between two remote quantum systems is enhanced by the low microwave losses.
arXiv Detail & Related papers (2022-06-30T17:57:37Z) - Slowing down light in a qubit metamaterial [98.00295925462214]
superconducting circuits in the microwave domain still lack such devices.
We demonstrate slowing down electromagnetic waves in a superconducting metamaterial composed of eight qubits coupled to a common waveguide.
Our findings demonstrate high flexibility of superconducting circuits to realize custom band structures.
arXiv Detail & Related papers (2022-02-14T20:55:10Z) - Near-Field Terahertz Nanoscopy of Coplanar Microwave Resonators [61.035185179008224]
Superconducting quantum circuits are one of the leading quantum computing platforms.
To advance superconducting quantum computing to a point of practical importance, it is critical to identify and address material imperfections that lead to decoherence.
Here, we use terahertz Scanning Near-field Optical Microscopy to probe the local dielectric properties and carrier concentrations of wet-etched aluminum resonators on silicon.
arXiv Detail & Related papers (2021-06-24T11:06:34Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Microwave Quantum Illumination via Cavity Magnonics [7.251898115709377]
We propose a hybrid quantum source based on cavity magnonics for microwave QI.
Within experimentally accessible parameters, significant microwave-optical quantum resources of interest can be generated.
arXiv Detail & Related papers (2020-11-09T10:20:08Z) - Ground-state Pulsed Cavity Electro-optics for Microwave-to-optical
Conversion [5.872328549827905]
We study the extraneous noise added to an electro-optic transducer in its quantum ground state under an intense pulsed optical excitation.
Our results shed light on suppressing microwave noise in a cavity electro-optic system under intense optical drive, which is an essential step towards quantum state between microwave and optical frequencies.
arXiv Detail & Related papers (2020-10-22T02:53:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.