論文の概要: The Staged Knowledge Distillation in Video Classification: Harmonizing
Student Progress by a Complementary Weakly Supervised Framework
- arxiv url: http://arxiv.org/abs/2307.05201v1
- Date: Tue, 11 Jul 2023 12:10:42 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-12 15:17:18.458974
- Title: The Staged Knowledge Distillation in Video Classification: Harmonizing
Student Progress by a Complementary Weakly Supervised Framework
- Title(参考訳): ビデオ分類における段階的知識蒸留:補足的弱監視フレームワークによる学生の進歩の調和
- Authors: Chao Wang, Zheng Tang
- Abstract要約: ビデオ分類における知識蒸留のための弱教師付き学習フレームワークを提案する。
本手法は,サブステージ学習の概念を利用して,学生のサブステージの組み合わせと,それに対応するサブステージの相関に基づく知識を抽出する。
提案手法は,ビデオデータに対するラベル効率学習の今後の研究の可能性を秘めている。
- 参考スコア(独自算出の注目度): 21.494759678807686
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the context of label-efficient learning on video data, the distillation
method and the structural design of the teacher-student architecture have a
significant impact on knowledge distillation. However, the relationship between
these factors has been overlooked in previous research. To address this gap, we
propose a new weakly supervised learning framework for knowledge distillation
in video classification that is designed to improve the efficiency and accuracy
of the student model. Our approach leverages the concept of substage-based
learning to distill knowledge based on the combination of student substages and
the correlation of corresponding substages. We also employ the progressive
cascade training method to address the accuracy loss caused by the large
capacity gap between the teacher and the student. Additionally, we propose a
pseudo-label optimization strategy to improve the initial data label. To
optimize the loss functions of different distillation substages during the
training process, we introduce a new loss method based on feature distribution.
We conduct extensive experiments on both real and simulated data sets,
demonstrating that our proposed approach outperforms existing distillation
methods in terms of knowledge distillation for video classification tasks. Our
proposed substage-based distillation approach has the potential to inform
future research on label-efficient learning for video data.
- Abstract(参考訳): ビデオデータにおけるラベル効率学習の文脈では, 蒸留法と教師-学生アーキテクチャの構造設計が知識蒸留に大きな影響を及ぼす。
しかし、これらの要因の関係は以前の研究では見過ごされている。
このギャップに対処するために,学生モデルの効率と精度を向上させるために,ビデオ分類における知識蒸留のための弱教師付き学習フレームワークを提案する。
本手法は,サブステージ学習の概念を活用し,学生サブステージとそれに対応するサブステージの相関関係に基づいて知識を蒸留する。
また,教師と生徒の容量差が大きいことによって生じる精度損失に対処するために,プログレッシブ・カスケード・トレーニング手法を用いた。
さらに,初期データラベルを改善するための擬似ラベル最適化戦略を提案する。
訓練過程における蒸留サブステージの損失関数を最適化するために,特徴分布に基づく新しい損失法を提案する。
実データとシミュレーションデータの両方について広範な実験を行い,ビデオ分類作業における知識蒸留の観点から,提案手法が既存の蒸留方法より優れていることを示す。
提案手法は,ビデオデータに対するラベル効率学習の今後の研究の可能性を秘めている。
関連論文リスト
- Adaptive Explicit Knowledge Transfer for Knowledge Distillation [17.739979156009696]
教師モデルから,非目標クラスの確率分布を効果的に提供することにより,ロジットに基づく知識蒸留の性能を向上させることができることを示す。
本研究では,学習者が暗黙的な知識を適応的に学習できる新たな損失を提案する。
実験結果から, 適応的明示的知識伝達法(AEKT)は, 最先端KD法と比較して性能が向上することが示された。
論文 参考訳(メタデータ) (2024-09-03T07:42:59Z) - Knowledge Distillation with Refined Logits [31.205248790623703]
本稿では,現在のロジット蒸留法の限界に対処するため,Refined Logit Distillation (RLD)を導入する。
我々のアプローチは、高性能な教師モデルでさえ誤った予測をすることができるという観察に動機づけられている。
本手法は,教師からの誤解を招く情報を,重要なクラス相関を保ちながら効果的に排除することができる。
論文 参考訳(メタデータ) (2024-08-14T17:59:32Z) - Multi-Granularity Semantic Revision for Large Language Model Distillation [66.03746866578274]
LLM蒸留における多粒性セマンティックリビジョン法を提案する。
シーケンスレベルでは、シーケンス修正と再生戦略を提案する。
トークンレベルでは、蒸留目的関数として、Kulback-Leibler損失を補正する分布適応クリッピングを設計する。
スパンレベルでは、シーケンスのスパン前処理を利用して、スパン内の確率相関を計算し、教師と学生の確率相関を一貫性に制約する。
論文 参考訳(メタデータ) (2024-07-14T03:51:49Z) - Knowledge Distillation via Token-level Relationship Graph [12.356770685214498]
token-level Relation Graph (TRG) を用いた知識蒸留法を提案する。
TRGを利用することで、教師モデルから高レベルの意味情報を効果的にエミュレートすることができる。
我々は,提案手法の有効性を,いくつかの最先端手法に対して評価する実験を行った。
論文 参考訳(メタデータ) (2023-06-20T08:16:37Z) - Knowledge Diffusion for Distillation [53.908314960324915]
知識蒸留(KD)における教師と学生の表現ギャップ
これらの手法の本質は、ノイズ情報を捨て、その特徴の貴重な情報を蒸留することである。
DiffKDと呼ばれる新しいKD手法を提案し、拡散モデルを用いて特徴を明示的に識別し一致させる。
論文 参考訳(メタデータ) (2023-05-25T04:49:34Z) - HomoDistil: Homotopic Task-Agnostic Distillation of Pre-trained
Transformers [49.79405257763856]
本稿では,タスク非依存蒸留に焦点をあてる。
これは、計算コストとメモリフットプリントを小さくして、様々なタスクで簡単に微調整できるコンパクトな事前訓練モデルを生成する。
本稿では, 反復刈り込みによる新規なタスク非依存蒸留法であるHomotopic Distillation (HomoDistil)を提案する。
論文 参考訳(メタデータ) (2023-02-19T17:37:24Z) - Class-aware Information for Logit-based Knowledge Distillation [16.634819319915923]
そこで本研究では,ロジット蒸留をインスタンスレベルとクラスレベルの両方で拡張する,クラス対応ロジット知識蒸留法を提案する。
CLKDにより、教師モデルからより高度な意味情報を模倣し、蒸留性能を向上させることができる。
論文 参考訳(メタデータ) (2022-11-27T09:27:50Z) - Delta Distillation for Efficient Video Processing [68.81730245303591]
デルタ蒸留と呼ばれる新しい知識蒸留方式を提案する。
ビデオフレーム内の時間的冗長性により,これらの時間的変動を効果的に蒸留できることを実証した。
副産物として、デルタ蒸留は教師モデルの時間的一貫性を向上させる。
論文 参考訳(メタデータ) (2022-03-17T20:13:30Z) - On the benefits of knowledge distillation for adversarial robustness [53.41196727255314]
知識蒸留は, 対向ロバスト性において, 最先端モデルの性能を高めるために直接的に利用できることを示す。
本稿では,モデルの性能向上のための新しいフレームワークであるAdversarial Knowledge Distillation (AKD)を提案する。
論文 参考訳(メタデータ) (2022-03-14T15:02:13Z) - Information Theoretic Representation Distillation [20.802135299032308]
情報理論と知識蒸留の代替関係を,最近提案したエントロピー様関数を用いて構築する。
本手法は,知識蒸留とクロスモデル伝達タスクの最先端技術に対する競争性能を実現する。
バイナリ量子化のための新しい最先端技術に光を当てた。
論文 参考訳(メタデータ) (2021-12-01T12:39:50Z) - Knowledge Distillation Meets Self-Supervision [109.6400639148393]
知識蒸留では、教師ネットワークから「暗黒の知識」を抽出し、学生ネットワークの学習を指導する。
一見異なる自己超越的なタスクが、単純だが強力なソリューションとして機能することを示します。
これらの自己超越信号の類似性を補助的タスクとして活用することにより、隠された情報を教師から生徒に効果的に転送することができる。
論文 参考訳(メタデータ) (2020-06-12T12:18:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。