論文の概要: Self-supervised adversarial masking for 3D point cloud representation
learning
- arxiv url: http://arxiv.org/abs/2307.05325v1
- Date: Tue, 11 Jul 2023 15:11:06 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-12 14:35:38.265980
- Title: Self-supervised adversarial masking for 3D point cloud representation
learning
- Title(参考訳): 3dポイントクラウド表現学習のための自己教師あり逆マスキング
- Authors: Micha{\l} Szachniewicz, Wojciech Koz{\l}owski, Micha{\l}
Stypu{\l}kowski and Maciej Zi\k{e}ba
- Abstract要約: 本稿では,点雲のマスキング関数を学習するための新しい逆法であるPointCAMを紹介する。
従来の手法と比較して,マスクをランダムに選択するのではなく,マスクの選択方法を学習する補助的ネットワークの適用を仮定する。
以上の結果から,学習したマスキング関数は,様々な下流タスクにおいて,最先端ないし競争的な性能を達成できることが示唆された。
- 参考スコア(独自算出の注目度): 0.38233569758620056
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Self-supervised methods have been proven effective for learning deep
representations of 3D point cloud data. Although recent methods in this domain
often rely on random masking of inputs, the results of this approach can be
improved. We introduce PointCAM, a novel adversarial method for learning a
masking function for point clouds. Our model utilizes a self-distillation
framework with an online tokenizer for 3D point clouds. Compared to previous
techniques that optimize patch-level and object-level objectives, we postulate
applying an auxiliary network that learns how to select masks instead of
choosing them randomly. Our results show that the learned masking function
achieves state-of-the-art or competitive performance on various downstream
tasks. The source code is available at https://github.com/szacho/pointcam.
- Abstract(参考訳): 自己教師付き手法は3Dポイントクラウドデータの深部表現を学習するのに有効であることが証明されている。
この領域における最近の手法は、しばしば入力のランダムマスキングに依存するが、このアプローチの結果は改善できる。
本稿では,点雲のマスキング関数を学習するための新しい逆法であるPointCAMを紹介する。
このモデルは3dポイントクラウド用のオンライントークン化器を備えた自己蒸留フレームワークを利用している。
パッチレベルとオブジェクトレベルの目的を最適化する従来の手法と比較して、ランダムにマスクを選択する代わりにマスクを選択する方法を学ぶ補助的なネットワークを適用することを仮定する。
その結果,学習したマスキング関数は,ダウンストリームタスクにおいて最先端あるいは競争性能を達成できることがわかった。
ソースコードはhttps://github.com/szacho/pointcamで入手できる。
関連論文リスト
- Point Cloud Self-supervised Learning via 3D to Multi-view Masked
Autoencoder [21.73287941143304]
Multi-Modality Masked AutoEncoders (MAE) 法は2次元画像と3次元点雲の両方を事前学習に利用している。
本稿では、3次元から多視点のマスク付きオートエンコーダを用いて、3次元点雲のマルチモーダル特性をフル活用する手法を提案する。
提案手法は,様々な下流タスクにおいて,最先端のタスクよりも大きなマージンで性能を向上する。
論文 参考訳(メタデータ) (2023-11-17T22:10:03Z) - Clustering based Point Cloud Representation Learning for 3D Analysis [80.88995099442374]
本稿では,ポイントクラウド分析のためのクラスタリングに基づく教師付き学習手法を提案する。
現在のデファクトでシーンワイドなトレーニングパラダイムとは異なり、我々のアルゴリズムは点埋め込み空間上でクラス内のクラスタリングを行う。
我々のアルゴリズムは、有名なポイントクラウドセグメンテーションデータセットの顕著な改善を示している。
論文 参考訳(メタデータ) (2023-07-27T03:42:12Z) - CPCM: Contextual Point Cloud Modeling for Weakly-supervised Point Cloud
Semantic Segmentation [60.0893353960514]
疎アノテーションを用いた弱教師付きポイントクラウドセマンティックセマンティックセグメンテーションの課題について検討する。
本研究では,地域マスキング(RegionMask)戦略とコンテキストマスキングトレーニング(CMT)手法の2つの部分からなるコンテキストポイントクラウドモデリング(CPCM)手法を提案する。
論文 参考訳(メタデータ) (2023-07-19T04:41:18Z) - Improving Masked Autoencoders by Learning Where to Mask [65.89510231743692]
マスケ画像モデリングは視覚データに対する有望な自己教師型学習手法である。
本稿では,Gumbel-Softmax を用いて,対向学習マスク生成装置とマスク誘導画像モデリングプロセスとを相互接続するフレームワーク AutoMAE を提案する。
実験の結果,AutoMAEは,標準の自己監督型ベンチマークや下流タスクに対して,効果的な事前学習モデルを提供することがわかった。
論文 参考訳(メタデータ) (2023-03-12T05:28:55Z) - Masked Autoencoders in 3D Point Cloud Representation Learning [7.617783375837524]
3Dポイントクラウド表現学習におけるマスク付きオートエンコーダを提案する(略してMAE3D)。
最初はインプットポイントクラウドをパッチに分割し、その一部をマスクし、次にPatch Embedding Moduleを使って未成熟のパッチの特徴を抽出しました。
総合的な実験により、ポイントクラウドパッチからMAE3Dによって抽出された局所的特徴が下流分類タスクに有用であることが示されている。
論文 参考訳(メタデータ) (2022-07-04T16:13:27Z) - Point-M2AE: Multi-scale Masked Autoencoders for Hierarchical Point Cloud
Pre-training [56.81809311892475]
Masked Autoencoders (MAE) は、言語と2次元画像変換器の自己教師付き事前学習において大きな可能性を示している。
我々は3次元点雲の階層的自己教師型学習のための強力なマルチスケールMAE事前学習フレームワークであるPoint-M2AEを提案する。
論文 参考訳(メタデータ) (2022-05-28T11:22:53Z) - Self-Supervised Arbitrary-Scale Point Clouds Upsampling via Implicit
Neural Representation [79.60988242843437]
そこで本研究では,自己監督型および倍率フレキシブルな点雲を同時にアップサンプリングする手法を提案する。
実験結果から, 自己教師あり学習に基づく手法は, 教師あり学習に基づく手法よりも, 競争力や性能が向上することが示された。
論文 参考訳(メタデータ) (2022-04-18T07:18:25Z) - Masked Discrimination for Self-Supervised Learning on Point Clouds [27.652157544218234]
マスク付きオートエンコーディングは、画像と言語領域における自己教師型学習において大きな成功を収めた。
PointNetのような標準的なバックボーンは、トレーニング中にマスクによって導入された分散ミスマッチのトレーニングとテストのミスマッチを適切に処理できない。
我々はこのギャップを、ポイントクラウドのための差別マスク事前学習フレームワークMaskPointを提案し、橋渡しする。
論文 参考訳(メタデータ) (2022-03-21T17:57:34Z) - CrossPoint: Self-Supervised Cross-Modal Contrastive Learning for 3D
Point Cloud Understanding [2.8661021832561757]
CrossPointは、転送可能な3Dポイントクラウド表現を学習するための、単純なクロスモーダルコントラスト学習アプローチである。
提案手法は,従来の教師なし学習手法よりも,3次元オブジェクト分類やセグメンテーションなど,さまざまな下流タスクにおいて優れていた。
論文 参考訳(メタデータ) (2022-03-01T18:59:01Z) - Unsupervised Representation Learning for 3D Point Cloud Data [66.92077180228634]
我々は、教師なしのポイントクラウド学習に対して、シンプルで効果的なアプローチを提案する。
特に、原点雲の優れたコントラストバージョンを生成する非常に有用な変換を同定する。
本研究では,3次元オブジェクト分類,形状部分分割,シーン分割の3つの下流タスクについて実験を行った。
論文 参考訳(メタデータ) (2021-10-13T10:52:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。