論文の概要: ProgGP: From GuitarPro Tablature Neural Generation To Progressive Metal
Production
- arxiv url: http://arxiv.org/abs/2307.05328v1
- Date: Tue, 11 Jul 2023 15:19:47 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-12 14:36:41.614570
- Title: ProgGP: From GuitarPro Tablature Neural Generation To Progressive Metal
Production
- Title(参考訳): ProgGP:ギタープロのタブラチュアニューラルジェネレーションからプログレッシブメタル生産へ
- Authors: Jackson Loth, Pedro Sarmento, CJ Carr, Zack Zukowski and Mathieu
Barthet
- Abstract要約: この作業は、173のプログレッシブメタル曲のカスタムデータセットであるProgGP上で、事前訓練されたトランスフォーマーモデルを微調整することで拡張する。
私たちのモデルは、複数のギター、ベースギター、ドラム、ピアノ、オーケストラのパーツを生成することができます。
そこで本研究では,プログレッシブ・メタル・ソングを制作するためのツールとして,人間のメタル・プロデューサによって完全生産・混合されたツールとして,モデルの価値を実証する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent work in the field of symbolic music generation has shown value in
using a tokenization based on the GuitarPro format, a symbolic representation
supporting guitar expressive attributes, as an input and output representation.
We extend this work by fine-tuning a pre-trained Transformer model on ProgGP, a
custom dataset of 173 progressive metal songs, for the purposes of creating
compositions from that genre through a human-AI partnership. Our model is able
to generate multiple guitar, bass guitar, drums, piano and orchestral parts. We
examine the validity of the generated music using a mixed methods approach by
combining quantitative analyses following a computational musicology paradigm
and qualitative analyses following a practice-based research paradigm. Finally,
we demonstrate the value of the model by using it as a tool to create a
progressive metal song, fully produced and mixed by a human metal producer
based on AI-generated music.
- Abstract(参考訳): シンボリック・ミュージック・ジェネレーションの分野における最近の研究は、ギター表現属性をサポートするシンボリック表現であるGuitarProフォーマットに基づくトークン化を入力および出力表現として用いることに価値を示している。
我々は,そのジャンルから人間とAIのパートナーシップを通じて作曲を作成するために,プログレッシブメタルの173曲のカスタムデータセットであるProgGP上で,事前学習されたトランスフォーマーモデルを微調整することによって,この作業を拡張する。
私たちのモデルは、複数のギター、ベースギター、ドラム、ピアノ、オーケストラパートを生成できます。
計算音楽学パラダイムによる定量的分析と,実践に基づく研究パラダイムによる定性的な分析を組み合わせ,混合手法を用いて生成音楽の有効性を検証した。
最後に,ai生成した音楽に基づいて,人間の金属生産者が完全生産し混合したプログレッシブメタルソングを作成するためのツールとして,モデルの価値を実証する。
関連論文リスト
- MuPT: A Generative Symbolic Music Pretrained Transformer [56.09299510129221]
音楽の事前学習におけるLarge Language Models (LLM) の適用について検討する。
生成過程の異なるトラックからの不整合対策に関連する課題に対処するために,SMT-ABC Notation(Synchronized Multi-Track ABC Notation)を提案する。
私たちのコントリビューションには、最大8192個のトークンを処理可能な一連のモデルが含まれており、トレーニングセットの象徴的な音楽データの90%をカバーしています。
論文 参考訳(メタデータ) (2024-04-09T15:35:52Z) - Combinatorial music generation model with song structure graph analysis [18.71152526968065]
音符列や楽器などの情報をノードの特徴として用いたグラフを構築し,音符列間の相関がエッジの特徴として機能する。
グラフニューラルネットワークを用いてノード表現を訓練し,ノード表現をUnetの入力として使用して,ConLONのピアノロール画像遅延を生成する。
論文 参考訳(メタデータ) (2023-12-24T04:09:30Z) - Simple and Controllable Music Generation [94.61958781346176]
MusicGenは単一の言語モデル(LM)であり、圧縮された離散的な音楽表現、すなわちトークンの複数のストリームで動作する。
以前の作業とは異なり、MusicGenはシングルステージのトランスフォーマーLMと効率的なトークンインターリービングパターンで構成されている。
論文 参考訳(メタデータ) (2023-06-08T15:31:05Z) - GTR-CTRL: Instrument and Genre Conditioning for Guitar-Focused Music
Generation with Transformers [14.025337055088102]
ギタータブ音楽生成にはDadaGPデータセット,GuitarProでは26万曲以上のコーパス,トークンフォーマットなどを用いています。
所望の楽器やジャンルに基づいてギタータブを生成するために,Transformer-XLディープラーニングモデルを条件付ける手法を提案する。
その結果、GTR-CTRL法は、無条件モデルよりもギター中心のシンボリック・ミュージック・ジェネレーションの柔軟性と制御性が高いことが示唆された。
論文 参考訳(メタデータ) (2023-02-10T17:43:03Z) - Symphony Generation with Permutation Invariant Language Model [57.75739773758614]
変分不変言語モデルに基づくシンフォニーネットという記号的シンフォニー音楽生成ソリューションを提案する。
シンフォニートークンの超長いシーケンスをモデル化するためのバックボーンとして、新しいトランスフォーマーデコーダアーキテクチャが導入された。
実験結果から,提案手法は人間の構成と比べ,コヒーレント,新規,複雑,調和的な交響曲を生成できることが示唆された。
論文 参考訳(メタデータ) (2022-05-10T13:08:49Z) - Quantized GAN for Complex Music Generation from Dance Videos [48.196705493763986]
D2M-GAN(Dance2Music-GAN, D2M-GAN, D2M-GAN)は、ダンスビデオに条件付けされた楽曲のサンプルを生成する新しいマルチモーダルフレームワークである。
提案フレームワークは,ダンスビデオフレームと人体の動きを入力とし,対応する入力に付随する音楽サンプルを生成することを学習する。
論文 参考訳(メタデータ) (2022-04-01T17:53:39Z) - DadaGP: A Dataset of Tokenized GuitarPro Songs for Sequence Models [25.15855175804765]
DadaGPは739のジャンルをカバーするGuitarProフォーマットの26,181曲からなる新しいシンボリック・ミュージック・データセットである。
DadaGPは、GuitarProファイルをトークンとバックに変換するエンコーダ/デコーダと共にリリースされた。
本稿では,DadaGPを用いてトランスフォーマーモデルを用いてGuitarProフォーマットで新しい曲を生成するユースケースについて述べる。
論文 参考訳(メタデータ) (2021-07-30T14:21:36Z) - Unsupervised Cross-Domain Singing Voice Conversion [105.1021715879586]
任意の同一性から音声変換を行うタスクに対して,wav-to-wav生成モデルを提案する。
提案手法は,自動音声認識のタスクのために訓練された音響モデルとメロディ抽出機能の両方を用いて波形ベースジェネレータを駆動する。
論文 参考訳(メタデータ) (2020-08-06T18:29:11Z) - The Jazz Transformer on the Front Line: Exploring the Shortcomings of
AI-composed Music through Quantitative Measures [36.49582705724548]
本稿では,ジャズ音楽のリードシートをモデル化するために,Transformer-XLと呼ばれるニューラルシーケンスモデルを利用する生成モデルであるJazz Transformerを提案する。
次に、異なる視点から生成された合成の一連の計算分析を行う。
我々の研究は、なぜ現在まで機械生成音楽が人類の芸術に及ばないのか分析的な方法で示し、今後の自動作曲への取り組みがさらに追求されるよう、いくつかの目標を設定している。
論文 参考訳(メタデータ) (2020-08-04T03:32:59Z) - RL-Duet: Online Music Accompaniment Generation Using Deep Reinforcement
Learning [69.20460466735852]
本稿では,オンライン伴奏生成のための深層強化学習アルゴリズムを提案する。
提案アルゴリズムは人体に応答し,メロディック,ハーモニック,多種多様な機械部品を生成する。
論文 参考訳(メタデータ) (2020-02-08T03:53:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。