A Self-Supervised Algorithm for Denoising Photoplethysmography Signals
for Heart Rate Estimation from Wearables
- URL: http://arxiv.org/abs/2307.05339v1
- Date: Fri, 7 Jul 2023 06:21:43 GMT
- Title: A Self-Supervised Algorithm for Denoising Photoplethysmography Signals
for Heart Rate Estimation from Wearables
- Authors: Pranay Jain, Cheng Ding, Cynthia Rudin, Xiao Hu
- Abstract summary: We develop an algorithm for denoising PPG signals that reconstructs the corrupted parts of the signal, while preserving the clean parts of the PPG signal.
Our novel framework relies on self-supervised training, where we leverage a large database of clean PPG signals to train a denoising autoencoder.
- Score: 21.086951625740824
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Smart watches and other wearable devices are equipped with
photoplethysmography (PPG) sensors for monitoring heart rate and other aspects
of cardiovascular health. However, PPG signals collected from such devices are
susceptible to corruption from noise and motion artifacts, which cause errors
in heart rate estimation. Typical denoising approaches filter or reconstruct
the signal in ways that eliminate much of the morphological information, even
from the clean parts of the signal that would be useful to preserve. In this
work, we develop an algorithm for denoising PPG signals that reconstructs the
corrupted parts of the signal, while preserving the clean parts of the PPG
signal. Our novel framework relies on self-supervised training, where we
leverage a large database of clean PPG signals to train a denoising
autoencoder. As we show, our reconstructed signals provide better estimates of
heart rate from PPG signals than the leading heart rate estimation methods.
Further experiments show significant improvement in Heart Rate Variability
(HRV) estimation from PPG signals using our algorithm. We conclude that our
algorithm denoises PPG signals in a way that can improve downstream analysis of
many different health metrics from wearable devices.
Related papers
- SQUWA: Signal Quality Aware DNN Architecture for Enhanced Accuracy in Atrial Fibrillation Detection from Noisy PPG Signals [37.788535094404644]
Atrial fibrillation (AF) significantly increases the risk of stroke, heart disease, and mortality.
Photoplethysmography ( PPG) signals are susceptible to corruption from motion artifacts and other factors often encountered in ambulatory settings.
We propose a novel deep learning model, designed to learn how to retain accurate predictions from partially corrupted PPG.
arXiv Detail & Related papers (2024-04-15T01:07:08Z) - Unsupervised Denoising for Signal-Dependent and Row-Correlated Imaging Noise [54.0185721303932]
We present the first fully unsupervised deep learning-based denoiser capable of handling imaging noise that is row-correlated.
Our approach uses a Variational Autoencoder with a specially designed autoregressive decoder.
Our method does not require a pre-trained noise model and can be trained from scratch using unpaired noisy data.
arXiv Detail & Related papers (2023-10-11T20:48:20Z) - PPG-to-ECG Signal Translation for Continuous Atrial Fibrillation Detection via Attention-based Deep State-Space Modeling [11.617950008187366]
Photoplethysmography ( PPG) is a cost-effective and non-invasive technique that utilizes optical methods to measure cardiac physiology.
Here, we propose a subject-independent attention-based deep state-space model (ADSSM) to translate PPG signals to corresponding ECG waveforms.
arXiv Detail & Related papers (2023-09-27T03:07:46Z) - DopUS-Net: Quality-Aware Robotic Ultrasound Imaging based on Doppler
Signal [48.97719097435527]
DopUS-Net combines the Doppler images with B-mode images to increase the segmentation accuracy and robustness of small blood vessels.
An artery re-identification module qualitatively evaluate the real-time segmentation results and automatically optimize the probe pose for enhanced Doppler images.
arXiv Detail & Related papers (2023-05-15T18:19:29Z) - WPPG Net: A Non-contact Video Based Heart Rate Extraction Network
Framework with Compatible Training Capability [21.33542693986985]
Our facial skin presents subtle color change known as remote Photoplethys (r) signal, from which we could extract the heart rate of the subject.
Recently many deep learning methods and related datasets on r signal extraction are proposed.
However, because of the time consumption blood flowing through our body and other factors, label waves such as BVP signals have uncertain delays with real r signals in some datasets.
In this paper, by analyzing the common characteristics on rhythm and periodicity of r signals and label waves, we propose a whole set of training methodology which wraps these networks so that they could remain efficient when be trained at
arXiv Detail & Related papers (2022-07-04T19:52:30Z) - Identifying Rhythmic Patterns for Face Forgery Detection and
Categorization [46.21354355137544]
We propose a framework for face forgery detection and categorization consisting of: 1) a Spatial-Temporal Filtering Network (STFNet) for PPG signals, and 2) a Spatial-Temporal Interaction Network (STINet) for constraint and interaction of PPG signals.
With insight into the generation of forgery methods, we further propose intra-source and inter-source blending to boost the performance of the framework.
arXiv Detail & Related papers (2022-07-04T04:57:06Z) - Motion Artifact Reduction In Photoplethysmography For Reliable Signal
Selection [5.264561559435017]
Photoplethysmography ( PPG) is a non-invasive and economical technique to extract vital signs of the human body.
It is sensitive to motion which can corrupt the signal's quality.
It is valuable to collect realistic PPG signals while performing Activities of Daily Living (ADL) to develop practical signal denoising and analysis methods.
arXiv Detail & Related papers (2021-09-06T21:53:56Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z) - Video-based Remote Physiological Measurement via Cross-verified Feature
Disentangling [121.50704279659253]
We propose a cross-verified feature disentangling strategy to disentangle the physiological features with non-physiological representations.
We then use the distilled physiological features for robust multi-task physiological measurements.
The disentangled features are finally used for the joint prediction of multiple physiological signals like average HR values and r signals.
arXiv Detail & Related papers (2020-07-16T09:39:17Z) - A Graph-constrained Changepoint Detection Approach for ECG Segmentation [5.209323879611983]
We introduce a novel graph-based optimal changepoint detection (GCCD) method for reliable detection of R-peak positions without employing any preprocessing step.
Based on the MIT-BIH arrhythmia (MIT-BIH-AR) database, the proposed method achieves overall sensitivity Sen = 99.76, positive predictivity PPR = 99.68, and detection error rate DER = 0.55.
arXiv Detail & Related papers (2020-04-24T23:41:41Z) - ADRN: Attention-based Deep Residual Network for Hyperspectral Image
Denoising [52.01041506447195]
We propose an attention-based deep residual network to learn a mapping from noisy HSI to the clean one.
Experimental results demonstrate that our proposed ADRN scheme outperforms the state-of-the-art methods both in quantitative and visual evaluations.
arXiv Detail & Related papers (2020-03-04T08:36:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.