論文の概要: Dividing and Conquering a BlackBox to a Mixture of Interpretable Models:
Route, Interpret, Repeat
- arxiv url: http://arxiv.org/abs/2307.05350v2
- Date: Wed, 12 Jul 2023 15:56:15 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-13 16:39:02.873138
- Title: Dividing and Conquering a BlackBox to a Mixture of Interpretable Models:
Route, Interpret, Repeat
- Title(参考訳): 解釈可能なモデルの混合に対するブラックボックスの分割とクエリ:経路、解釈、繰り返し
- Authors: Shantanu Ghosh, Ke Yu, Forough Arabshahi, Kayhan Batmanghelich
- Abstract要約: ブラックボックスモデルは柔軟だが説明が難しいが、解釈可能なモデルは本質的に説明可能である。
本稿では,ブラックボックスのポストホックな説明と解釈可能なモデルの構築の区別を曖昧にすることを目的としている。
- 参考スコア(独自算出の注目度): 19.01849806863748
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: ML model design either starts with an interpretable model or a Blackbox and
explains it post hoc. Blackbox models are flexible but difficult to explain,
while interpretable models are inherently explainable. Yet, interpretable
models require extensive ML knowledge and tend to be less flexible and
underperforming than their Blackbox variants. This paper aims to blur the
distinction between a post hoc explanation of a Blackbox and constructing
interpretable models. Beginning with a Blackbox, we iteratively carve out a
mixture of interpretable experts (MoIE) and a residual network. Each
interpretable model specializes in a subset of samples and explains them using
First Order Logic (FOL), providing basic reasoning on concepts from the
Blackbox. We route the remaining samples through a flexible residual. We repeat
the method on the residual network until all the interpretable models explain
the desired proportion of data. Our extensive experiments show that our route,
interpret, and repeat approach (1) identifies a diverse set of
instance-specific concepts with high concept completeness via MoIE without
compromising in performance, (2) identifies the relatively ``harder'' samples
to explain via residuals, (3) outperforms the interpretable by-design models by
significant margins during test-time interventions, and (4) fixes the shortcut
learned by the original Blackbox. The code for MoIE is publicly available at:
\url{https://github.com/batmanlab/ICML-2023-Route-interpret-repeat}
- Abstract(参考訳): mlモデル設計は解釈可能なモデルかブラックボックスから始まり、ポストホックであると説明する。
ブラックボックスモデルは柔軟だが説明が難しいが、解釈可能なモデルは本質的に説明可能である。
しかし、解釈可能なモデルは広範なml知識を必要とし、ブラックボックスの変種よりも柔軟性とパフォーマンスが低い傾向がある。
本稿では,ブラックボックスのポストホックな説明と解釈可能なモデルの構築の区別を曖昧にすることを目的とする。
ブラックボックスから始めると、解釈可能な専門家(moie)と残りのネットワークの混合を反復的に作り出す。
各解釈可能なモデルはサンプルのサブセットを専門とし、一階述語論理(fol)を用いて説明し、ブラックボックスの概念に関する基本的な推論を提供する。
残りのサンプルを柔軟な残留物にルーティングします。
すべての解釈可能なモデルが所望のデータの割合を説明するまで、残差ネットワーク上のメソッドを繰り返す。
以上の結果から,本手法では,提案手法は,性能を損なうことなく,MoIEによる高概念完全性を備えた多種多様なインスタンス固有概念の集合を同定し,残差を説明できる比較的‘harder’のサンプルを同定し,(3)テスト時間介入時にかなりの差で解釈可能な設計モデルを上回り,(4)オリジナルのBlackboxで学んだショートカットを修正した。
MoIEのコードは以下で公開されている。 \url{https://github.com/batmanlab/ICML-2023-Route-interpret-repeat}
関連論文リスト
- DISCRET: Synthesizing Faithful Explanations For Treatment Effect Estimation [21.172795461188578]
我々は,各サンプルに対して忠実で規則に基づく説明を合成する自己解釈型ITTフレームワークdisCRETを提案する。
DISCRETの背景にある重要な洞察は、説明が2つのデータベースクエリとして機能し、類似したサンプルのサブグループを識別できるということである。
大規模な探索空間からこれらの説明を効率的に合成する新しいRLアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-06-02T04:01:08Z) - Sparse Concept Bottleneck Models: Gumbel Tricks in Contrastive Learning [86.15009879251386]
概念ボトルネックモデル(CBM)を用いた新しいアーキテクチャと説明可能な分類法を提案する。
CBMには、さらなる概念のセットが必要である。
CLIPをベースとしたボトルネックモデルにおいて,スパース隠れ層を用いた精度の大幅な向上を示す。
論文 参考訳(メタデータ) (2024-04-04T09:43:43Z) - FreeSeg-Diff: Training-Free Open-Vocabulary Segmentation with Diffusion Models [56.71672127740099]
我々は,閉鎖語彙データセットのトレーニングモデルによって伝統的に解決されるイメージセグメンテーションの課題に焦点をあてる。
我々は、ゼロショットのオープン語彙セグメンテーションのために、異なる、比較的小さなオープンソース基盤モデルを活用している。
当社のアプローチ(別名FreeSeg-Diff)は、トレーニングに依存しないもので、Pascal VOCとCOCOデータセットの両方で多くのトレーニングベースのアプローチより優れています。
論文 参考訳(メタデータ) (2024-03-29T10:38:25Z) - Learning to Explain: A Model-Agnostic Framework for Explaining Black Box
Models [9.945345991490624]
本稿では、視覚モデルに対するポストホックな説明を提供するためのモデルに依存しないフレームワークであるLearning to Explain(LTX)を紹介する。
LTXフレームワークは、説明マップを生成する"説明者"モデルを導入し、説明されているモデルの予測を正当化する重要な領域を強調している。
LTXは、様々な指標において、現在の最先端の説明可能性を大幅に上回っていることを実証する。
論文 参考訳(メタデータ) (2023-10-25T12:18:00Z) - Dynamic Clue Bottlenecks: Towards Interpretable-by-Design Visual Question Answering [58.64831511644917]
本稿では, モデル決定を中間的人間法的な説明に分解する設計モデルを提案する。
我々は、我々の本質的に解釈可能なシステムは、推論に焦点をあてた質問において、同等のブラックボックスシステムよりも4.64%改善できることを示した。
論文 参考訳(メタデータ) (2023-05-24T08:33:15Z) - An Interpretable Loan Credit Evaluation Method Based on Rule
Representation Learner [8.08640000394814]
我々は、Lending ClubデータセットのRRL(Rule Representation)に基づいて、本質的に解釈可能なモデルを設計する。
トレーニング中、私たちは以前の研究から、バイナリウェイトを効果的にトレーニングするためのトリックを学びました。
本モデルは,ポストホック法により生成された説明の正当性を検証するために用いられる。
論文 参考訳(メタデータ) (2023-04-03T05:55:04Z) - Interpretations Steered Network Pruning via Amortized Inferred Saliency
Maps [85.49020931411825]
限られたリソースを持つエッジデバイスにこれらのモデルをデプロイするには、畳み込みニューラルネットワーク(CNN)圧縮が不可欠である。
本稿では,新しい視点からチャネルプルーニング問題に対処するために,モデルの解釈を活用して,プルーニング過程を解析する手法を提案する。
本研究では,実時間スムーズなスムーズなスムーズなスムーズなマスク予測を行うセレクタモデルを導入することで,この問題に対処する。
論文 参考訳(メタデータ) (2022-09-07T01:12:11Z) - Can Explanations Be Useful for Calibrating Black Box Models? [31.473798197405948]
我々は,新しいドメインの例から,ブラックボックスモデルの性能を新しいドメインで改善する方法について検討する。
提案手法はまず,タスクに対する人間の直感とモデル属性を組み合わせた一連の特徴を抽出する。
キャリブレーション機能はタスク間である程度移動し、効果的に利用する方法について光を当てている。
論文 参考訳(メタデータ) (2021-10-14T17:48:16Z) - VisBERT: Hidden-State Visualizations for Transformers [66.86452388524886]
VisBERTは,複数の質問応答のタスクに対して,BERT内のコンテキストトークン表現を可視化するツールである。
VisBERTは、モデルの内部状態に関する洞察を得て、推論ステップや潜在的な欠点を探索することを可能にする。
論文 参考訳(メタデータ) (2020-11-09T15:37:43Z) - Model extraction from counterfactual explanations [68.8204255655161]
本稿では, 敵が反実的説明によって提供された情報を利用して, 高精度かつ高精度なモデル抽出攻撃を構築する方法を示す。
我々の攻撃は、敵が相手モデルの忠実なコピーを、その偽説明にアクセスして作成することを可能にする。
論文 参考訳(メタデータ) (2020-09-03T19:02:55Z) - Learning Global Transparent Models Consistent with Local Contrastive
Explanations [34.86847988157447]
ブラックボックスモデルについて,局所的な対照的な説明からカスタム機能を作成し,これらだけでグローバルに透過的なモデルをトレーニングする。
そこで本研究では,ブラックボックスモデルの局所的な対照的な説明からカスタムな特徴を創出し,その上にグローバルな透明なモデルをトレーニングする手法を提案する。
論文 参考訳(メタデータ) (2020-02-19T15:45:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。