論文の概要: Using BOLD-fMRI to Compute the Respiration Volume per Time (RTV) and
Respiration Variation (RV) with Convolutional Neural Networks (CNN) in the
Human Connectome Development Cohort
- arxiv url: http://arxiv.org/abs/2307.05426v1
- Date: Mon, 3 Jul 2023 18:06:36 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-16 03:45:10.279700
- Title: Using BOLD-fMRI to Compute the Respiration Volume per Time (RTV) and
Respiration Variation (RV) with Convolutional Neural Networks (CNN) in the
Human Connectome Development Cohort
- Title(参考訳): BOLD-fMRIを用いたヒトコネクトーム開発コーホートにおける呼吸量(RTV)と呼吸変動(RV)の畳み込みニューラルネットワーク(CNN)による計算
- Authors: Abdoljalil Addeh, Fernando Vega, Rebecca J Williams, Ali Golestani, G.
Bruce Pike, M. Ethan MacDonald
- Abstract要約: 本研究では, RVとRVTの2つの呼吸対策を再現するための1次元CNNモデルを提案する。
その結果、CNNはBOLD信号の静止から情報的特徴を捉え、現実的なRVとRVTのタイムリーを再構築できることがわかった。
- 参考スコア(独自算出の注目度): 55.41644538483948
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In many fMRI studies, respiratory signals are unavailable or do not have
acceptable quality. Consequently, the direct removal of low-frequency
respiratory variations from BOLD signals is not possible. This study proposes a
one-dimensional CNN model for reconstruction of two respiratory measures, RV
and RVT. Results show that a CNN can capture informative features from resting
BOLD signals and reconstruct realistic RV and RVT timeseries. It is expected
that application of the proposed method will lower the cost of fMRI studies,
reduce complexity, and decrease the burden on participants as they will not be
required to wear a respiratory bellows.
- Abstract(参考訳): 多くのfMRI研究では、呼吸信号は利用できないか、許容できる品質を持っていない。
そのため、BOLD信号からの低周波呼吸変動の直接除去は不可能である。
本研究は, rvとrvtの2つの呼吸指標の再構成のための1次元cnnモデルを提案する。
その結果、CNNはBOLD信号の静止から情報的特徴を捉え、現実的なRVとRVTのタイムリーを再構築できることがわかった。
提案手法の適用により,fMRI研究のコストを低減し,複雑さを低減し,呼吸鐘を装着する必要がなくなるため,参加者の負担を軽減することが期待される。
関連論文リスト
- Machine Learning-based Estimation of Respiratory Fluctuations in a Healthy Adult Population using BOLD fMRI and Head Motion Parameters [39.96015789655091]
多くのfMRI研究では、呼吸信号が欠如しているか、品質が悪いことがしばしばある。
周辺記録装置を必要とせずに、fMRIデータから直接呼吸変動(RV)波形を抽出するツールを持つことは、非常に有益である。
本研究では,頭部運動パラメータとBOLD信号を用いたRV波形再構成のためのCNNモデルを提案する。
論文 参考訳(メタデータ) (2024-04-30T21:53:11Z) - Rotational Augmented Noise2Inverse for Low-dose Computed Tomography
Reconstruction [83.73429628413773]
改良された深層学習手法は、画像のノイズを除去する能力を示しているが、正確な地上の真実を必要とする。
畳み込みニューラルネットワーク(CNN)のトレーニングに基礎的真理を必要としないLDCTのための新しい自己教師型フレームワークを提案する。
数値および実験結果から,Sparse View を用いた N2I の再構成精度は低下しており,提案手法は異なる範囲のサンプリング角度で画像品質を向上する。
論文 参考訳(メタデータ) (2023-12-19T22:40:51Z) - Learning Federated Visual Prompt in Null Space for MRI Reconstruction [83.71117888610547]
我々はMRI再建のためのグローバルプロンプトのヌル空間におけるフェデレートされた視覚的プロンプトを学習するための新しいアルゴリズムであるFedPRを提案する。
FedPRは、ローカルトレーニングデータの限られた量を与えられた場合、通信コストの6%で最先端のFLアルゴリズムを著しく上回っている。
論文 参考訳(メタデータ) (2023-03-28T17:46:16Z) - A Path Towards Clinical Adaptation of Accelerated MRI [0.0]
臨床関連性を高めるために,ニューラルネットワークMRI画像再構成器の強化について検討する。
MR信号データに可変加速度因子を付加したトレーニングコンストラクタは, 臨床患者検診における平均性能を最大で2%向上できることを示した。
論文 参考訳(メタデータ) (2022-08-26T18:34:41Z) - REGAS: REspiratory-GAted Synthesis of Views for Multi-Phase CBCT
Reconstruction from a single 3D CBCT Acquisition [75.64791080418162]
REGASは、アンダーサンプドトモグラフィビューを合成し、再構成画像中のアーティファクトのエイリアスを緩和する自己教師手法を提案する。
高解像度4Dデータ上でのディープニューラルネットワークの大規模なメモリコストに対処するため、REGASは分散して微分可能なフォワードプロジェクションを可能にする新しいレイパス変換(RPT)を導入した。
論文 参考訳(メタデータ) (2022-08-17T03:42:19Z) - Faster Diffusion Cardiac MRI with Deep Learning-based breath hold
reduction [7.559996316671546]
DT-CMRは、生体内および非侵襲的に心筋内の心筋細胞の微細構造を調査することができる。
DT-CMRは現在非効率であり、単一の2D静的画像を取得するのに6分以上かかる。
本稿では,DT-CMRデータセットの生成に必要な繰り返し数を削減し,その後にノイズを除去することを提案する。
論文 参考訳(メタデータ) (2022-06-21T17:17:00Z) - Towards performant and reliable undersampled MR reconstruction via
diffusion model sampling [67.73698021297022]
DiffuseReconは拡散モデルに基づく新しいMR再構成法である。
観測された信号に基づいて生成過程を導出する。
特定の加速因子に関する追加の訓練は必要としない。
論文 参考訳(メタデータ) (2022-03-08T02:25:38Z) - Estimating Respiratory Rate From Breath Audio Obtained Through Wearable
Microphones [6.293929325572208]
呼吸速度(英: respiratory rate、RR)は、全身の健康状態と体力を評価するための臨床指標である。
本研究は,健常成人における身体運動後に得られた短い音声区間からRRを推定するためのモデル駆動アプローチについて検討する。
論文 参考訳(メタデータ) (2021-07-28T17:24:44Z) - CovidDeep: SARS-CoV-2/COVID-19 Test Based on Wearable Medical Sensors
and Efficient Neural Networks [51.589769497681175]
新型コロナウイルス(SARS-CoV-2)がパンデミックを引き起こしている。
SARS-CoV-2の逆転写-ポリメラーゼ連鎖反応に基づく現在の試験体制は、試験要求に追いついていない。
我々は,効率的なDNNと市販のWMSを組み合わせたCovidDeepというフレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-20T21:47:28Z) - Generative-based Airway and Vessel Morphology Quantification on Chest CT
Images [8.414072468546875]
本稿では, 気道ラウンジ, 気道壁厚, 血管半径の断面計測を行う畳み込みニューラルレグレシタ(CNR)を提案する。
CNRは、SimulatedおよびUnversa Generative Adrial Network(SimGAN)と組み合わせて使用される合成構造の生成モデルによって生成されたデータを用いて訓練される
血管では小血管血液量の推定値と一酸化炭素(DLCO)の肺拡散能の相関性を評価する。
論文 参考訳(メタデータ) (2020-02-13T18:45:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。