Online Ad Procurement in Non-stationary Autobidding Worlds
- URL: http://arxiv.org/abs/2307.05698v1
- Date: Mon, 10 Jul 2023 00:41:08 GMT
- Title: Online Ad Procurement in Non-stationary Autobidding Worlds
- Authors: Jason Cheuk Nam Liang, Haihao Lu, Baoyu Zhou
- Abstract summary: We introduce a primal-dual algorithm for online decision making with multi-dimension decision variables, bandit feedback and long-term uncertain constraints.
We show that our algorithm achieves low regret in many worlds when procurement outcomes are generated through procedures that are adversarial, adversarially corrupted, periodic, and ergodic.
- Score: 10.871587311621974
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Today's online advertisers procure digital ad impressions through interacting
with autobidding platforms: advertisers convey high level procurement goals via
setting levers such as budget, target return-on-investment, max cost per click,
etc.. Then ads platforms subsequently procure impressions on advertisers'
behalf, and report final procurement conversions (e.g. click) to advertisers.
In practice, advertisers may receive minimal information on platforms'
procurement details, and procurement outcomes are subject to non-stationary
factors like seasonal patterns, occasional system corruptions, and market
trends which make it difficult for advertisers to optimize lever decisions
effectively. Motivated by this, we present an online learning framework that
helps advertisers dynamically optimize ad platform lever decisions while
subject to general long-term constraints in a realistic bandit feedback
environment with non-stationary procurement outcomes. In particular, we
introduce a primal-dual algorithm for online decision making with
multi-dimension decision variables, bandit feedback and long-term uncertain
constraints. We show that our algorithm achieves low regret in many worlds when
procurement outcomes are generated through procedures that are stochastic,
adversarial, adversarially corrupted, periodic, and ergodic, respectively,
without having to know which procedure is the ground truth. Finally, we
emphasize that our proposed algorithm and theoretical results extend beyond the
applications of online advertising.
Related papers
- Why am I Still Seeing This: Measuring the Effectiveness Of Ad Controls and Explanations in AI-Mediated Ad Targeting Systems [55.02903075972816]
We evaluate the effectiveness of Meta's "See less" ad control and the actionability of ad targeting explanations following the shift to AI-mediated targeting.
We find that utilizing the "See less" ad control for the topics we study does not significantly reduce the number of ads shown by Meta on these topics.
We find that the majority of ad targeting explanations for local ads made no reference to location-specific targeting criteria.
arXiv Detail & Related papers (2024-08-21T18:03:11Z) - A Primal-Dual Online Learning Approach for Dynamic Pricing of Sequentially Displayed Complementary Items under Sale Constraints [54.46126953873298]
We address the problem of dynamically pricing complementary items that are sequentially displayed to customers.
Coherent pricing policies for complementary items are essential because optimizing the pricing of each item individually is ineffective.
We empirically evaluate our approach using synthetic settings randomly generated from real-world data, and compare its performance in terms of constraints violation and regret.
arXiv Detail & Related papers (2024-07-08T09:55:31Z) - Multi-Platform Budget Management in Ad Markets with Non-IC Auctions [6.037383467521294]
In online advertising markets, budget-constrained advertisers acquire ad placements through repeated bidding in auctions on various platforms.
We present a strategy for bidding optimally in a set of auctions that may or may not be incentive-compatible under the presence of budget constraints.
Our strategy maximizes the expected total utility across auctions while satisfying the advertiser's budget constraints in expectation.
arXiv Detail & Related papers (2023-06-12T18:21:10Z) - Adversarial Constrained Bidding via Minimax Regret Optimization with
Causality-Aware Reinforcement Learning [18.408964908248855]
Existing approaches on constrained bidding typically rely on i.i.d. train and test conditions.
We propose a practical Minimax Regret Optimization (MiRO) approach that interleaves between a teacher finding adversarial environments for tutoring and a learner meta-learning its policy over the given distribution of environments.
Our method, MiRO with Causality-aware reinforcement Learning (MiROCL), outperforms prior methods by over 30%.
arXiv Detail & Related papers (2023-06-12T13:31:58Z) - Demystifying Advertising Campaign Bid Recommendation: A Constraint
target CPA Goal Optimization [19.857681941728597]
This paper presents a bid optimization scenario to achieve the desired cost-per-acquisition (tCPA) goals for advertisers.
We build the optimization engine to make a decision by solving the rigorously formalized constrained optimization problem.
The proposed model can naturally recommend the bid that meets the advertisers' expectations by making inference over advertisers' historical auction behaviors.
arXiv Detail & Related papers (2022-12-26T07:43:26Z) - A Profit-Maximizing Strategy for Advertising on the e-Commerce Platforms [1.565361244756411]
The proposed model aims to find the optimal set of features to maximize the probability of converting targeted audiences into actual buyers.
We conduct an empirical study featuring real-world data from Tmall to show that our proposed method can effectively optimize the advertising strategy with budgetary constraints.
arXiv Detail & Related papers (2022-10-31T01:45:42Z) - We Know What You Want: An Advertising Strategy Recommender System for
Online Advertising [26.261736843187045]
We propose a recommender system for dynamic bidding strategy recommendation on display advertising platform.
We use a neural network as the agent to predict the advertisers' demands based on their profile and historical adoption behaviors.
Online evaluations show that the system can optimize the advertisers' advertising performance.
arXiv Detail & Related papers (2021-05-25T17:06:59Z) - A novel auction system for selecting advertisements in Real-Time bidding [68.8204255655161]
Real-Time Bidding is a new Internet advertising system that has become very popular in recent years.
We propose an alternative betting system with a new approach that not only considers the economic aspect but also other relevant factors for the functioning of the advertising system.
arXiv Detail & Related papers (2020-10-22T18:36:41Z) - Learning to Infer User Hidden States for Online Sequential Advertising [52.169666997331724]
We propose our Deep Intents Sequential Advertising (DISA) method to address these issues.
The key part of interpretability is to understand a consumer's purchase intent which is, however, unobservable (called hidden states)
arXiv Detail & Related papers (2020-09-03T05:12:26Z) - Dynamic Knapsack Optimization Towards Efficient Multi-Channel Sequential
Advertising [52.3825928886714]
We formulate the sequential advertising strategy optimization as a dynamic knapsack problem.
We propose a theoretically guaranteed bilevel optimization framework, which significantly reduces the solution space of the original optimization space.
To improve the exploration efficiency of reinforcement learning, we also devise an effective action space reduction approach.
arXiv Detail & Related papers (2020-06-29T18:50:35Z) - Online Joint Bid/Daily Budget Optimization of Internet Advertising
Campaigns [115.96295568115251]
We study the problem of automating the online joint bid/daily budget optimization of pay-per-click advertising campaigns over multiple channels.
For every campaign, we capture the dependency of the number of clicks on the bid and daily budget by Gaussian Processes.
We design four algorithms and show that they suffer from a regret that is upper bounded with high probability as O(sqrtT)
We present the results of the adoption of our algorithms in a real-world application with a daily average spent of 1,000 Euros for more than one year.
arXiv Detail & Related papers (2020-03-03T11:07:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.