論文の概要: Grid Cell-Inspired Fragmentation and Recall for Efficient Map Building
- arxiv url: http://arxiv.org/abs/2307.05793v3
- Date: Mon, 8 Jul 2024 15:04:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-10 03:38:37.295125
- Title: Grid Cell-Inspired Fragmentation and Recall for Efficient Map Building
- Title(参考訳): グリッドセルによる効率的な地図構築のためのフラグメンテーションとリコール
- Authors: Jaedong Hwang, Zhang-Wei Hong, Eric Chen, Akhilan Boopathy, Pulkit Agrawal, Ila Fiete,
- Abstract要約: 本研究では,FARMap(Fragmentation-and-Recall)の概念を大規模空間のマッピングに適用する。
エージェントは、空間の仮定に基づくクラスタリングを通じて局所写像を構築することで、マッピング問題を解決する。
FARMapは動物実験で観察された断片化点を再現することを示した。
- 参考スコア(独自算出の注目度): 29.630483662400444
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Animals and robots navigate through environments by building and refining maps of space. These maps enable functions including navigation back to home, planning, search and foraging. Here, we use observations from neuroscience, specifically the observed fragmentation of grid cell map in compartmentalized spaces, to propose and apply the concept of Fragmentation-and-Recall (FARMap) in the mapping of large spaces. Agents solve the mapping problem by building local maps via a surprisal-based clustering of space, which they use to set subgoals for spatial exploration. Agents build and use a local map to predict their observations; high surprisal leads to a "fragmentation event" that truncates the local map. At these events, the recent local map is placed into long-term memory (LTM) and a different local map is initialized. If observations at a fracture point match observations in one of the stored local maps, that map is recalled (and thus reused) from LTM. The fragmentation points induce a natural online clustering of the larger space, forming a set of intrinsic potential subgoals that are stored in LTM as a topological graph. Agents choose their next subgoal from the set of near and far potential subgoals from within the current local map or LTM, respectively. Thus, local maps guide exploration locally, while LTM promotes global exploration. We demonstrate that FARMap replicates the fragmentation points observed in animal studies. We evaluate FARMap on complex procedurally-generated spatial environments and realistic simulations to demonstrate that this mapping strategy much more rapidly covers the environment (number of agent steps and wall clock time) and is more efficient in active memory usage, without loss of performance. https://jd730.github.io/projects/FARMap/
- Abstract(参考訳): 動物やロボットは、空間の地図を構築して精製することで、環境の中を移動します。
これらの地図は、家へのナビゲーション、計画、探索、採餌などの機能を可能にする。
ここでは、ニューロサイエンス、特に複合空間におけるグリッドセルマップの断片化を観察し、大きな空間のマッピングにおいてフラグメンテーション・アンド・リコール(FARMap)の概念を提案し、適用する。
エージェントは空間の予備的なクラスタリングを通じて局所写像を構築し、空間探索のためにサブゴールを設定することでマッピング問題を解決する。
エージェントはローカルマップを構築して、その観測を予測します。
これらのイベントでは、最近のローカルマップを長期メモリ(LTM)に配置し、異なるローカルマップを初期化する。
フラクチャーポイントでの観測が保存されたローカルマップの1つでの観測と一致した場合、そのマップはLTMからリコールされる(再利用される)。
断片化ポイントは、より大きな空間の自然なオンラインクラスタリングを誘導し、トポロジカルグラフとしてLTMに格納される固有のポテンシャルサブゴールの集合を形成する。
エージェントは、それぞれの次のサブゴールを、現在のローカルマップまたはLTM内から、近縁および遠縁のサブゴールのセットから選択する。
したがって、ローカルマップは局所的な探検をガイドし、LTMはグローバルな探検を促進する。
FARMapは動物実験で観察された断片化点を再現することを示した。
複雑な手続き的に生成された空間環境と現実的なシミュレーションに基づいてFARMapを評価し、このマッピング戦略が環境(エージェントステップ数や壁時計時間)をより高速にカバーし、性能を損なうことなく、アクティブなメモリ使用においてより効率的であることを示す。
https://jd730.github.io/projects/FARMap/
関連論文リスト
- Tag Map: A Text-Based Map for Spatial Reasoning and Navigation with Large Language Models [15.454856838083511]
大言語モデル(LLM)は、ロボットが共通感覚推論を用いてタスクプランを生成するためのツールとして登場した。
最近の研究は、固定された意味クラスを持つ明示的な写像から暗黙的なオープンな語彙マップへと移行している。
LLMと簡単に統合しながら、数千のセマンティッククラスを表現できる明示的なテキストベースのマップを提案する。
論文 参考訳(メタデータ) (2024-09-23T18:26:19Z) - PRISM-TopoMap: Online Topological Mapping with Place Recognition and Scan Matching [42.74395278382559]
本稿では,局所的な位置のグラフを保持するトポロジカルマッピング手法であるPRISM-TopoMapを紹介する。
提案手法は,ローカライゼーションとループ閉鎖のためのスキャンマッチングパイプラインと組み合わせた学習可能なマルチモーダル位置認識を含む。
提案手法の広範な実験的評価を,写真実写環境および実ロボット上で行った。
論文 参考訳(メタデータ) (2024-04-02T06:25:16Z) - Deep Homography Estimation for Visual Place Recognition [49.235432979736395]
本稿では,変換器を用いたディープホモグラフィー推定(DHE)ネットワークを提案する。
バックボーンネットワークによって抽出された濃密な特徴写像を入力とし、高速で学習可能な幾何的検証のためにホモグラフィーに適合する。
ベンチマークデータセットを用いた実験により,本手法はいくつかの最先端手法より優れていることが示された。
論文 参考訳(メタデータ) (2024-02-25T13:22:17Z) - Loopy-SLAM: Dense Neural SLAM with Loop Closures [53.11936461015725]
ポーズをグローバルに最適化するLoopy-SLAMと高密度3Dモデルを導入する。
我々は,データ駆動のポイントベースサブマップ生成手法を用いてフレーム・ツー・モデル追跡を行い,グローバルな位置認識を行うことで,オンラインのループクロージャをトリガーする。
合成Replicaおよび実世界のTUM-RGBDおよびScanNetデータセットの評価は、既存の高密度ニューラルネットワークRGBD SLAM法と比較して、追跡、マッピング、レンダリングの精度の競争力または優れた性能を示す。
論文 参考訳(メタデータ) (2024-02-14T18:18:32Z) - Background Activation Suppression for Weakly Supervised Object
Localization and Semantic Segmentation [84.62067728093358]
弱教師付きオブジェクトローカライゼーションとセマンティックセグメンテーションは、画像レベルのラベルのみを使用してオブジェクトをローカライズすることを目的としている。
画素レベルのローカライゼーションを実現するために,フォアグラウンド予測マップを生成することで,新たなパラダイムが誕生した。
本稿では,物体の局在化学習過程に関する2つの驚くべき実験結果を示す。
論文 参考訳(メタデータ) (2023-09-22T15:44:10Z) - Long-term Visual Map Sparsification with Heterogeneous GNN [47.12309045366042]
本稿では,環境変化を克服し,将来のローカライゼーションに有用な点を選択することで,地図サイズを同時に削減することを目的とする。
グラフニューラルネットワーク(GNN)の最近の進歩に触発されて,SfMマップを異種グラフとしてモデル化し,GNNを用いて3次元点重要度を推定する最初の研究を提案する。
2つの新しい監督手法が提案されている: 1) トレーニングクエリに基づく将来のローカライゼーションに有用なポイントを選択するためのデータ適合用語、2) スパースポイントをフルマップで選択するためのK-Cover用語。
論文 参考訳(メタデータ) (2022-03-29T01:46:12Z) - Residual Moment Loss for Medical Image Segmentation [56.72261489147506]
位置情報は,対象物体の多様体構造を捉えた深層学習モデルに有効であることが証明された。
既存のほとんどの手法は、ネットワークが学習するために、位置情報を暗黙的にエンコードする。
セグメント化対象の位置情報を明示的に埋め込むために,新しい損失関数,すなわち残差モーメント(RM)損失を提案する。
論文 参考訳(メタデータ) (2021-06-27T09:31:49Z) - Supervised Topological Maps [0.76146285961466]
ニューラルネットワークの内部表現空間を制御することは、教師付き方法で新しいデータを生成することができるため、望ましい特徴である。
自己組織化マップ(SOM)から始まる一般化アルゴリズムを導出することにより、入力ストリームの低次元マッピングを構築しながら、これをどのように実現できるかを示す。
論文 参考訳(メタデータ) (2020-08-14T14:30:16Z) - Rethinking Localization Map: Towards Accurate Object Perception with
Self-Enhancement Maps [78.2581910688094]
本研究は, カテゴリーラベルのみを監督として, 正確な対象位置分布マップと対象境界を抽出する, 新たな自己強調手法を提案する。
特に、提案されたセルフエンハンスメントマップは、ILSVRC上で54.88%の最先端のローカライゼーション精度を達成する。
論文 参考訳(メタデータ) (2020-06-09T12:35:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。