論文の概要: Differentiable Forward Projector for X-ray Computed Tomography
- arxiv url: http://arxiv.org/abs/2307.05801v1
- Date: Tue, 11 Jul 2023 20:52:46 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-13 14:59:23.288249
- Title: Differentiable Forward Projector for X-ray Computed Tomography
- Title(参考訳): x線ct用微分可能な前方プロジェクタ
- Authors: Hyojin Kim and Kyle Champley
- Abstract要約: データ駆動型深層学習は、様々な計算トモグラフィー再構成問題にうまく適用されている。
本稿では,予測画像と元の計測値との整合性を確保するために,精度の高い前方・後方プロジェクションソフトウェアライブラリを提案する。
- 参考スコア(独自算出の注目度): 6.1868857343691115
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Data-driven deep learning has been successfully applied to various computed
tomographic reconstruction problems. The deep inference models may outperform
existing analytical and iterative algorithms, especially in ill-posed CT
reconstruction. However, those methods often predict images that do not agree
with the measured projection data. This paper presents an accurate
differentiable forward and back projection software library to ensure the
consistency between the predicted images and the original measurements. The
software library efficiently supports various projection geometry types while
minimizing the GPU memory footprint requirement, which facilitates seamless
integration with existing deep learning training and inference pipelines. The
proposed software is available as open source: https://github.com/LLNL/LEAP.
- Abstract(参考訳): データ駆動型深層学習は、様々な計算トモグラフィー再構成問題にうまく適用されている。
深部推論モデルは、既存の解析的および反復的アルゴリズム、特に不良なCT再構成においてより優れている。
しかし、これらの方法は計測された投影データと一致しない画像を予測することが多い。
本稿では,予測画像と実測値との一貫性を確保するため,高精度な前方および後方投影ソフトウェアライブラリを提案する。
このソフトウェアライブラリは、GPUメモリフットプリント要件を最小化しながら、様々な投影幾何学タイプを効率的にサポートし、既存のディープラーニングトレーニングと推論パイプラインとのシームレスな統合を容易にする。
提案されたソフトウェアは、オープンソースとして利用可能である。
関連論文リスト
- Robust Two-View Geometry Estimation with Implicit Differentiation [2.048226951354646]
本稿では,新しい2次元幾何推定フレームワークを提案する。
これは微分可能なロバスト損失関数のフィッティングに基づいている。
本研究では,屋外シナリオと屋内シナリオの両方において,カメラポーズ推定タスクに対するアプローチを評価する。
論文 参考訳(メタデータ) (2024-10-23T15:51:33Z) - Robust Geometry-Preserving Depth Estimation Using Differentiable
Rendering [93.94371335579321]
我々は、余分なデータやアノテーションを必要とせずに、幾何学保存深度を予測するためにモデルを訓練する学習フレームワークを提案する。
包括的な実験は、我々のフレームワークの優れた一般化能力を強調します。
我々の革新的な損失関数は、ドメイン固有のスケール・アンド・シフト係数を自律的に復元するモデルを可能にします。
論文 参考訳(メタデータ) (2023-09-18T12:36:39Z) - FrozenRecon: Pose-free 3D Scene Reconstruction with Frozen Depth Models [67.96827539201071]
本稿では,3次元シーン再構成のための新しいテスト時間最適化手法を提案する。
本手法は5つのゼロショットテストデータセット上で,最先端のクロスデータセット再構築を実現する。
論文 参考訳(メタデータ) (2023-08-10T17:55:02Z) - Geometry-Aware Attenuation Learning for Sparse-View CBCT Reconstruction [53.93674177236367]
Cone Beam Computed Tomography (CBCT) は臨床画像撮影において重要な役割を担っている。
従来の方法では、高品質な3D CBCT画像の再構成には数百の2次元X線投影が必要である。
これにより、放射線線量を減らすため、スパースビューCBCT再構成への関心が高まっている。
本稿では,この問題を解決するために,新しい幾何対応エンコーダデコーダフレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-26T14:38:42Z) - Curvature regularization for Non-line-of-sight Imaging from
Under-sampled Data [5.591221518341613]
非視線イメージング(NLOS)は、視線で測定されたデータから3次元の隠れたシーンを再構築することを目的としている。
曲率正規化に基づく新しいNLOS再構成モデルを提案する。
提案したアルゴリズムを,合成データセットと実データセットの両方で評価する。
論文 参考訳(メタデータ) (2023-01-01T14:10:43Z) - SiPRNet: End-to-End Learning for Single-Shot Phase Retrieval [8.820823270160695]
畳み込みニューラルネットワーク(CNN)は、様々な画像再構成タスクにおいて重要な役割を果たしている。
本稿では,1つのフーリエ強度測定から信号を取得するために,SiPRNetという新しいCNN構造を設計する。
提案手法は、シングルショットマスクレス位相検索において、他のCNNおよび従来の最適化手法よりも一貫して優れている。
論文 参考訳(メタデータ) (2022-05-23T16:24:52Z) - A modular software framework for the design and implementation of
ptychography algorithms [55.41644538483948]
我々は,Pychographyデータセットをシミュレートし,最先端の再構築アルゴリズムをテストすることを目的とした,新しいptychographyソフトウェアフレームワークであるSciComを紹介する。
その単純さにもかかわらず、ソフトウェアはPyTorchインターフェースによる高速化処理を利用する。
結果は合成データと実データの両方で示される。
論文 参考訳(メタデータ) (2022-05-06T16:32:37Z) - PDC-Net+: Enhanced Probabilistic Dense Correspondence Network [161.76275845530964]
高度確率密度対応ネットワーク(PDC-Net+)は、精度の高い高密度対応を推定できる。
我々は、堅牢で一般化可能な不確実性予測に適したアーキテクチャと強化されたトレーニング戦略を開発する。
提案手法は,複数の挑戦的幾何マッチングと光学的フローデータセットに対して,最先端の結果を得る。
論文 参考訳(メタデータ) (2021-09-28T17:56:41Z) - Visual SLAM with Graph-Cut Optimized Multi-Plane Reconstruction [11.215334675788952]
本稿では,インスタンス平面セグメンテーションネットワークからのキューを用いたポーズ推定とマッピングを改善する意味平面SLAMシステムを提案する。
メインストリームのアプローチはRGB-Dセンサーを使用するが、そのようなシステムを備えた単眼カメラを使うことは、ロバストデータアソシエーションや正確な幾何モデルフィッティングといった課題に直面している。
論文 参考訳(メタデータ) (2021-08-09T18:16:08Z) - Data Consistent CT Reconstruction from Insufficient Data with Learned
Prior Images [70.13735569016752]
偽陰性病変と偽陽性病変を呈示し,CT画像再構成における深層学習の堅牢性について検討した。
本稿では,圧縮センシングと深層学習の利点を組み合わせた画像品質向上のためのデータ一貫性再構築手法を提案する。
提案手法の有効性は,円錐ビームCTにおいて,トランキャットデータ,リミテッドアングルデータ,スパースビューデータで示される。
論文 参考訳(メタデータ) (2020-05-20T13:30:49Z) - Indoor Layout Estimation by 2D LiDAR and Camera Fusion [3.2387553628943535]
本稿では,画像列とLiDARデータセットの融合による屋内レイアウト推定と再構築のためのアルゴリズムを提案する。
提案システムでは,2次元LiDAR情報とインテンシティ画像の両方を移動プラットフォームで収集する。
論文 参考訳(メタデータ) (2020-01-15T16:43:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。