Differentiable Forward Projector for X-ray Computed Tomography
- URL: http://arxiv.org/abs/2307.05801v1
- Date: Tue, 11 Jul 2023 20:52:46 GMT
- Title: Differentiable Forward Projector for X-ray Computed Tomography
- Authors: Hyojin Kim and Kyle Champley
- Abstract summary: Data-driven deep learning has been successfully applied to various computed tomographic reconstruction problems.
This paper presents an accurate differentiable forward and back projection software library to ensure the consistency between the predicted images and the original measurements.
- Score: 6.1868857343691115
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Data-driven deep learning has been successfully applied to various computed
tomographic reconstruction problems. The deep inference models may outperform
existing analytical and iterative algorithms, especially in ill-posed CT
reconstruction. However, those methods often predict images that do not agree
with the measured projection data. This paper presents an accurate
differentiable forward and back projection software library to ensure the
consistency between the predicted images and the original measurements. The
software library efficiently supports various projection geometry types while
minimizing the GPU memory footprint requirement, which facilitates seamless
integration with existing deep learning training and inference pipelines. The
proposed software is available as open source: https://github.com/LLNL/LEAP.
Related papers
- Robust Two-View Geometry Estimation with Implicit Differentiation [2.048226951354646]
We present a novel two-view geometry estimation framework.
It is based on a differentiable robust loss function fitting.
We evaluate our approach on the camera pose estimation task in both outdoor and indoor scenarios.
arXiv Detail & Related papers (2024-10-23T15:51:33Z) - Robust Geometry-Preserving Depth Estimation Using Differentiable
Rendering [93.94371335579321]
We propose a learning framework that trains models to predict geometry-preserving depth without requiring extra data or annotations.
Comprehensive experiments underscore our framework's superior generalization capabilities.
Our innovative loss functions empower the model to autonomously recover domain-specific scale-and-shift coefficients.
arXiv Detail & Related papers (2023-09-18T12:36:39Z) - FrozenRecon: Pose-free 3D Scene Reconstruction with Frozen Depth Models [67.96827539201071]
We propose a novel test-time optimization approach for 3D scene reconstruction.
Our method achieves state-of-the-art cross-dataset reconstruction on five zero-shot testing datasets.
arXiv Detail & Related papers (2023-08-10T17:55:02Z) - Geometry-Aware Attenuation Learning for Sparse-View CBCT Reconstruction [53.93674177236367]
Cone Beam Computed Tomography (CBCT) plays a vital role in clinical imaging.
Traditional methods typically require hundreds of 2D X-ray projections to reconstruct a high-quality 3D CBCT image.
This has led to a growing interest in sparse-view CBCT reconstruction to reduce radiation doses.
We introduce a novel geometry-aware encoder-decoder framework to solve this problem.
arXiv Detail & Related papers (2023-03-26T14:38:42Z) - Curvature regularization for Non-line-of-sight Imaging from
Under-sampled Data [5.591221518341613]
Non-line-of-sight (NLOS) imaging aims to reconstruct the three-dimensional hidden scenes from the data measured in the line-of-sight.
We propose novel NLOS reconstruction models based on curvature regularization.
We evaluate the proposed algorithms on both synthetic and real datasets.
arXiv Detail & Related papers (2023-01-01T14:10:43Z) - SiPRNet: End-to-End Learning for Single-Shot Phase Retrieval [8.820823270160695]
convolutional neural networks (CNN) have played important roles in various image reconstruction tasks.
In this paper, we design a novel CNN structure, named SiPRNet, to recover a signal from a single Fourier intensity measurement.
The proposed approach consistently outperforms other CNN-based and traditional optimization-based methods in single-shot maskless phase retrieval.
arXiv Detail & Related papers (2022-05-23T16:24:52Z) - A modular software framework for the design and implementation of
ptychography algorithms [55.41644538483948]
We present SciCom, a new ptychography software framework aiming at simulating ptychography datasets and testing state-of-the-art reconstruction algorithms.
Despite its simplicity, the software leverages accelerated processing through the PyTorch interface.
Results are shown on both synthetic and real datasets.
arXiv Detail & Related papers (2022-05-06T16:32:37Z) - PDC-Net+: Enhanced Probabilistic Dense Correspondence Network [161.76275845530964]
Enhanced Probabilistic Dense Correspondence Network, PDC-Net+, capable of estimating accurate dense correspondences.
We develop an architecture and an enhanced training strategy tailored for robust and generalizable uncertainty prediction.
Our approach obtains state-of-the-art results on multiple challenging geometric matching and optical flow datasets.
arXiv Detail & Related papers (2021-09-28T17:56:41Z) - Visual SLAM with Graph-Cut Optimized Multi-Plane Reconstruction [11.215334675788952]
This paper presents a semantic planar SLAM system that improves pose estimation and mapping using cues from an instance planar segmentation network.
While the mainstream approaches are using RGB-D sensors, employing a monocular camera with such a system still faces challenges such as robust data association and precise geometric model fitting.
arXiv Detail & Related papers (2021-08-09T18:16:08Z) - Data Consistent CT Reconstruction from Insufficient Data with Learned
Prior Images [70.13735569016752]
We investigate the robustness of deep learning in CT image reconstruction by showing false negative and false positive lesion cases.
We propose a data consistent reconstruction (DCR) method to improve their image quality, which combines the advantages of compressed sensing and deep learning.
The efficacy of the proposed method is demonstrated in cone-beam CT with truncated data, limited-angle data and sparse-view data, respectively.
arXiv Detail & Related papers (2020-05-20T13:30:49Z) - Indoor Layout Estimation by 2D LiDAR and Camera Fusion [3.2387553628943535]
This paper presents an algorithm for indoor layout estimation and reconstruction through the fusion of a sequence of captured images and LiDAR data sets.
In the proposed system, a movable platform collects both intensity images and 2D LiDAR information.
arXiv Detail & Related papers (2020-01-15T16:43:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.