論文の概要: Ecosystem-level Analysis of Deployed Machine Learning Reveals Homogeneous Outcomes
- arxiv url: http://arxiv.org/abs/2307.05862v2
- Date: Wed, 3 Apr 2024 06:02:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-04 23:27:42.254633
- Title: Ecosystem-level Analysis of Deployed Machine Learning Reveals Homogeneous Outcomes
- Title(参考訳): 均質な結果を示すデプロイ機械学習の生態系レベル解析
- Authors: Connor Toups, Rishi Bommasani, Kathleen A. Creel, Sarah H. Bana, Dan Jurafsky, Percy Liang,
- Abstract要約: 本研究では,機械学習の社会的影響を,特定の文脈に展開されるモデルの集合を考慮し検討する。
デプロイされた機械学習はシステム障害を起こしやすいため、利用可能なすべてのモデルに排他的に誤分類されているユーザもいます。
これらの例は、エコシステムレベルの分析が、機械学習の社会的影響を特徴づける独自の強みを持っていることを示している。
- 参考スコア(独自算出の注目度): 72.13373216644021
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning is traditionally studied at the model level: researchers measure and improve the accuracy, robustness, bias, efficiency, and other dimensions of specific models. In practice, the societal impact of machine learning is determined by the surrounding context of machine learning deployments. To capture this, we introduce ecosystem-level analysis: rather than analyzing a single model, we consider the collection of models that are deployed in a given context. For example, ecosystem-level analysis in hiring recognizes that a job candidate's outcomes are not only determined by a single hiring algorithm or firm but instead by the collective decisions of all the firms they applied to. Across three modalities (text, images, speech) and 11 datasets, we establish a clear trend: deployed machine learning is prone to systemic failure, meaning some users are exclusively misclassified by all models available. Even when individual models improve at the population level over time, we find these improvements rarely reduce the prevalence of systemic failure. Instead, the benefits of these improvements predominantly accrue to individuals who are already correctly classified by other models. In light of these trends, we consider medical imaging for dermatology where the costs of systemic failure are especially high. While traditional analyses reveal racial performance disparities for both models and humans, ecosystem-level analysis reveals new forms of racial disparity in model predictions that do not present in human predictions. These examples demonstrate ecosystem-level analysis has unique strengths for characterizing the societal impact of machine learning.
- Abstract(参考訳): 研究者は、特定のモデルの正確性、堅牢性、バイアス、効率、その他の次元を測定し、改善する。
実際に、機械学習の社会的影響は、機械学習のデプロイメントの周囲のコンテキストによって決定される。
ひとつのモデルを分析するのではなく、特定のコンテキストにデプロイされるモデルの集合を考える。
例えば、雇用におけるエコシステムレベルの分析では、求職者の成果は単一の雇用アルゴリズムや企業によって決定されるだけでなく、応募したすべての企業の集団的決定によって決定される。
3つのモダリティ(テキスト、画像、スピーチ)と11のデータセットにまたがって、私たちは明確な傾向を確立しています。
個々のモデルが時間とともに人口レベルで改善しても、このような改善がシステム障害の頻度を減少させることはめったにない。
代わりに、これらの改善の利点は、主に、既に他のモデルによって正しく分類されている個人に生じる。
これらの傾向を踏まえ,システム障害のコストが特に高い皮膚科領域の医用画像について考察する。
従来の分析では、モデルと人間の両方で人種的パフォーマンスの相違が見られるが、生態系レベルの分析では、人間の予測に存在しないモデル予測に新しい形態の人種的相違が見られる。
これらの例は、エコシステムレベルの分析が、機械学習の社会的影響を特徴づける独自の強みを持っていることを示している。
関連論文リスト
- Fast Model Debias with Machine Unlearning [54.32026474971696]
ディープニューラルネットワークは多くの現実世界のシナリオでバイアスのある振る舞いをする。
既存のデバイアス法は、バイアスラベルやモデル再トレーニングのコストが高い。
バイアスを特定し,評価し,除去するための効率的なアプローチを提供する高速モデル脱バイアスフレームワーク(FMD)を提案する。
論文 参考訳(メタデータ) (2023-10-19T08:10:57Z) - Towards unraveling calibration biases in medical image analysis [2.4054878434935074]
典型的に採用されるキャリブレーションの指標が,サンプルサイズに対して体系的に偏りがあることを示す。
これは、データ不均衡が人口構成群間で劇的なサンプルサイズ差をもたらすフェアネス研究に特に関係している。
論文 参考訳(メタデータ) (2023-05-09T00:11:35Z) - ComplAI: Theory of A Unified Framework for Multi-factor Assessment of
Black-Box Supervised Machine Learning Models [6.279863832853343]
ComplAIは、説明可能性、堅牢性、パフォーマンス、公正性、モデル行動を有効にし、観察し、分析し、定量化するユニークなフレームワークである。
教師付き機械学習モデルの評価は、正しい予測を行う能力だけでなく、全体的な責任の観点から行う。
論文 参考訳(メタデータ) (2022-12-30T08:48:19Z) - Picking on the Same Person: Does Algorithmic Monoculture lead to Outcome
Homogenization? [90.35044668396591]
機械学習における繰り返しのテーマはアルゴリズムによるモノカルチャーである。同じシステム、またはコンポーネントを共有するシステムは、複数の意思決定者によってデプロイされる。
意思決定者がトレーニングデータや特定のモデルなどのコンポーネントを共有すれば、より均一な結果が得られます。
我々はこの仮説をアルゴリズムフェアネスベンチマークで検証し、トレーニングデータの共有がホモジェナイゼーションを確実に悪化させることを示した。
結果の均質化に関する哲学的分析と社会的な課題を、デプロイされた機械学習システムに含めることに着目して結論付ける。
論文 参考訳(メタデータ) (2022-11-25T09:33:11Z) - Synthetic Model Combination: An Instance-wise Approach to Unsupervised
Ensemble Learning [92.89846887298852]
ラベル付きデータのトレーニングセットから学ぶ機会のない、新しいテストデータに対する予測を検討する。
専門家モデルのセットと予測へのアクセスと、トレーニングに使用するデータセットに関する制限された情報を提供すること。
論文 参考訳(メタデータ) (2022-10-11T10:20:31Z) - Learning from Heterogeneous Data Based on Social Interactions over
Graphs [58.34060409467834]
本研究では,個別のエージェントが異なる次元のストリーミング特徴を観察しながら分類問題の解決を目指す分散アーキテクチャを提案する。
私たちはそれを示します。
戦略により、エージェントはこの高度に異質な環境下で一貫して学習することができる。
私たちはそれを示します。
戦略により、エージェントはこの高度に異質な環境下で一貫して学習することができる。
論文 参考訳(メタデータ) (2021-12-17T12:47:18Z) - An Uncertainty-based Human-in-the-loop System for Industrial Tool Wear
Analysis [68.8204255655161]
人間のループシステムにおけるモンテカルロのドロップアウトに基づく不確実性対策により,システムの透明性と性能が向上することを示す。
シミュレーション研究により、不確実性に基づく「ループ内人間システム」は、様々なレベルの人間の関与に対する性能を高めることが示されている。
論文 参考訳(メタデータ) (2020-07-14T15:47:37Z) - A Hierarchy of Limitations in Machine Learning [0.0]
本稿では,社会に応用された機械学習におけるモデルの概念的,手続き的,統計的制限の包括的,構造化された概要を論じる。
モデラー自身は、記述された階層を使って、可能な障害点を特定し、それらに対処する方法を考えることができます。
機械学習モデルの消費者は、機械学習を適用するかどうか、場所、方法に関する決定に直面したときに、何を問うべきかを知ることができる。
論文 参考訳(メタデータ) (2020-02-12T19:39:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。