論文の概要: Close-up View synthesis by Interpolating Optical Flow
- arxiv url: http://arxiv.org/abs/2307.05913v1
- Date: Wed, 12 Jul 2023 04:40:00 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-13 14:19:22.352026
- Title: Close-up View synthesis by Interpolating Optical Flow
- Title(参考訳): 補間光学流によるクローズアップビュー合成
- Authors: Xinyi Bai, Ze Wang, Lu Yang, Hong Cheng
- Abstract要約: 仮想視点は、深度情報や不明瞭なカメラパラメータが欠如していることから、仮想ナビゲーションにおける新しい技術として認識されている。
我々は,光学フローの比例による仮想視点を得るための双方向光フロー法を開発した。
光学フロー値の創発的な応用により、任意の角にレンズを張ることで、鮮明で視覚的忠実度が向上する。
- 参考スコア(独自算出の注目度): 17.800430382213428
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The virtual viewpoint is perceived as a new technique in virtual navigation,
as yet not supported due to the lack of depth information and obscure camera
parameters. In this paper, a method for achieving close-up virtual view is
proposed and it only uses optical flow to build parallax effects to realize
pseudo 3D projection without using depth sensor. We develop a bidirectional
optical flow method to obtain any virtual viewpoint by proportional
interpolation of optical flow. Moreover, with the ingenious application of the
optical-flow-value, we achieve clear and visual-fidelity magnified results
through lens stretching in any corner, which overcomes the visual distortion
and image blur through viewpoint magnification and transition in Google Street
View system.
- Abstract(参考訳): 仮想視点は、深度情報や不明瞭なカメラパラメータが欠如していることから、仮想ナビゲーションにおける新しい技術として認識されている。
本稿では,深度センサを使わずに擬似3次元投影を実現するために,光学フローのみを用いてパララックス効果を発生させるクローズアップ仮想ビューを実現する手法を提案する。
光フローの比例補間により仮想視点を得るための双方向光フロー法を開発した。
さらに、光学フロー値の巧妙な応用により、googleストリートビューシステムにおける視点拡大と遷移による視覚的歪みや画像のぼかしを克服する、任意の隅角でのレンズストレッチによる明快で視覚的な拡大結果が得られる。
関連論文リスト
- Stereo-Depth Fusion through Virtual Pattern Projection [37.519762078762575]
本稿では,新しい汎用ステレオ・ディープデータ融合パラダイムを提案する。
これは、信頼できない物理パターンプロジェクターを奥行きセンサーに置き換えることで、アクティブなステレオ原理を模倣する。
従来のステレオカメラで取得した左右の画像に、シーン形状と整合した仮想パターンを投影する。
論文 参考訳(メタデータ) (2024-06-06T17:59:58Z) - UFD-PRiME: Unsupervised Joint Learning of Optical Flow and Stereo Depth
through Pixel-Level Rigid Motion Estimation [4.445751695675388]
光の流れとステレオの相違は画像の一致であり、そのため関節トレーニングの恩恵を受けることができる。
我々は、フローと格差を共同で推定し、監督なしに訓練される最初のネットワークを設計する。
第2のネットワークは、第1のネットワークから擬似ラベルとして光学的流れを訓練し、第1のネットワークから格差を取り、各ピクセルにおける3次元剛性運動を推定し、再び光学的流れを再構築する。
論文 参考訳(メタデータ) (2023-10-07T07:08:25Z) - Skin the sheep not only once: Reusing Various Depth Datasets to Drive
the Learning of Optical Flow [25.23550076996421]
本稿では,光学的フロー推定とステレオマッチングの幾何学的接続を活用することを提案する。
モノクラー深度データセットを仮想的不均一性によってステレオデータに変換する。
また、ステレオデータに仮想カメラの動きを導入し、垂直方向に沿って追加のフローを生成する。
論文 参考訳(メタデータ) (2023-10-03T06:56:07Z) - Optimization-Based Eye Tracking using Deflectometric Information [14.010352335803873]
最先端の視線追跡法は、スパース点光源の反射や、取得した視線画像の2D特徴を画像ベースで活用する。
我々はPyTorch3Dに基づいて、画面照明下で仮想視線をシミュレートする微分可能なパイプラインを開発する。
一般的に,本手法は特定のパターンレンダリングを必要としないため,メインのVR/AR/MR画面自体の通常のビデオフレームで動作する。
論文 参考訳(メタデータ) (2023-03-09T02:41:13Z) - Dimensions of Motion: Learning to Predict a Subspace of Optical Flow
from a Single Image [50.9686256513627]
本稿では,1つのビデオフレームから,実際の瞬時光フローを含む低次元の光フローのサブスペースを予測する問題を紹介する。
いくつかの自然シーンの仮定によって、不均一性によってパラメータ化されたベースフローフィールドの集合を通して、適切なフロー部分空間を特定できることを示す。
これは、カメラの内在やポーズを必要とせずに、単眼入力ビデオを使用して教師なしの方法でこれらのタスクを学習する新しいアプローチを提供する。
論文 参考訳(メタデータ) (2021-12-02T18:52:54Z) - Extracting Triangular 3D Models, Materials, and Lighting From Images [59.33666140713829]
多視点画像観測による材料と照明の協調最適化手法を提案する。
従来のグラフィックスエンジンにデプロイ可能な,空間的に変化する材料と環境を備えたメッシュを活用します。
論文 参考訳(メタデータ) (2021-11-24T13:58:20Z) - Learning optical flow from still images [53.295332513139925]
我々は,容易に利用可能な単一の実画像から,高精度な光学的フローアノテーションを迅速かつ多量に生成するフレームワークを提案する。
既知の動きベクトルと回転角を持つ再構成された環境でカメラを仮想的に移動させる。
我々のデータでトレーニングすると、最先端の光フローネットワークは、実データを見るのに優れた一般化を実現する。
論文 参考訳(メタデータ) (2021-04-08T17:59:58Z) - Optical Flow Estimation from a Single Motion-blurred Image [66.2061278123057]
画像内の動きのぼかしは、基本的なコンピュータビジョンの問題に実用的な関心を持つ可能性があります。
本研究では,単一動画像からの光流れをエンドツーエンドで推定する新しい枠組みを提案する。
論文 参考訳(メタデータ) (2021-03-04T12:45:18Z) - FLAVR: Flow-Agnostic Video Representations for Fast Frame Interpolation [97.99012124785177]
FLAVRは、3D空間時間の畳み込みを使用して、ビデオフレームのエンドツーエンドの学習と推論を可能にする柔軟で効率的なアーキテクチャです。
FLAVRは、アクション認識、光フロー推定、モーション拡大のための有用な自己解釈タスクとして役立つことを実証します。
論文 参考訳(メタデータ) (2020-12-15T18:59:30Z) - Joint Unsupervised Learning of Optical Flow and Egomotion with Bi-Level
Optimization [59.9673626329892]
エピポーラ幾何を用いた光学フローとカメラモーションのグローバルな関係を利用する。
我々は暗黙の微分を用いて、その実装とは無関係に低レベルの幾何最適化層を通してバックプロパゲーションを可能にする。
論文 参考訳(メタデータ) (2020-02-26T22:28:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。