論文の概要: A New Dataset and Comparative Study for Aphid Cluster Detection
- arxiv url: http://arxiv.org/abs/2307.05929v1
- Date: Wed, 12 Jul 2023 05:49:21 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-13 14:10:02.683083
- Title: A New Dataset and Comparative Study for Aphid Cluster Detection
- Title(参考訳): aphidクラスタ検出のための新しいデータセットと比較研究
- Authors: Tianxiao Zhang, Kaidong Li, Xiangyu Chen, Cuncong Zhong, Bo Luo, Ivan
Grijalva Teran, Brian McCornack, Daniel Flippo, Ajay Sharda, Guanghui Wang
- Abstract要約: アフィドは作物、農村の家族、そして世界の食料安全保障に対する主要な脅威の1つである。
アフィドの感染を正確に特定し レベルを推定することは 農薬の正確な局所的応用に 不可欠です
我々は,ソリガムフィールドで何百万枚もの画像を撮影し,手動でアフィドを含む5,447枚の画像を選択し,画像中の各アフィドクラスタに注釈を付けた。
- 参考スコア(独自算出の注目度): 17.65292847038642
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Aphids are one of the main threats to crops, rural families, and global food
security. Chemical pest control is a necessary component of crop production for
maximizing yields, however, it is unnecessary to apply the chemical approaches
to the entire fields in consideration of the environmental pollution and the
cost. Thus, accurately localizing the aphid and estimating the infestation
level is crucial to the precise local application of pesticides. Aphid
detection is very challenging as each individual aphid is really small and all
aphids are crowded together as clusters. In this paper, we propose to estimate
the infection level by detecting aphid clusters. We have taken millions of
images in the sorghum fields, manually selected 5,447 images that contain
aphids, and annotated each aphid cluster in the image. To use these images for
machine learning models, we crop the images into patches and created a labeled
dataset with over 151,000 image patches. Then, we implement and compare the
performance of four state-of-the-art object detection models.
- Abstract(参考訳): アフィドは作物、農村の家族、そして世界の食料安全保障に対する主要な脅威の1つである。
化学害虫防除は収量を最大化するために作物生産に必要な要素であるが、環境汚染やコストを考慮した化学的アプローチを全分野に適用することは不要である。
したがって、アブラムシの正確な局在化と寄生レベルの推定は、殺虫剤の正確な局所的適用に不可欠である。
個々のアブラムシは非常に小さく、すべてのアブラムシがクラスタとして混み合っているため、アブラムシの検出は非常に難しい。
本稿では,アブラムシクラスタの検出により感染レベルを推定する。
我々は,ソリガムフィールドで何百万枚もの画像を撮影し,手動でアフィドを含む5,447枚の画像を選択し,各アフィドクラスタに注釈を付けた。
これらのイメージを機械学習モデルに使用するために、イメージをパッチに抽出し、151,000以上のイメージパッチを持つラベル付きデータセットを作成しました。
次に4つの最先端オブジェクト検出モデルの性能を実装・比較する。
関連論文リスト
- PlantSeg: A Large-Scale In-the-wild Dataset for Plant Disease Segmentation [37.383095056084834]
植物病データセットは一般的にセグメンテーションラベルを欠いている。
実験室の設定からの画像を含む典型的なデータセットとは異なり、PlanetSegは主に野生の植物病の画像で構成されている。
植物セグは11,400枚の画像と病気のセグメンテーションマスクと、植物の種類によって分類された8000枚の健康な植物画像が特徴である。
論文 参考訳(メタデータ) (2024-09-06T06:11:28Z) - A New Dataset and Comparative Study for Aphid Cluster Detection and Segmentation in Sorghum Fields [9.735484847744416]
アフィドの感染は小麦やソルガムの畑に大きな被害をもたらす主要な原因の1つである。
農家はしばしば、健康と環境に悪影響を及ぼす有害な農薬を非効率に利用する。
我々は,アフィドクラスタの検出とセグメンテーションのための大規模なマルチスケールデータセットを開発した。
論文 参考訳(メタデータ) (2024-05-07T13:27:58Z) - Aphid Cluster Recognition and Detection in the Wild Using Deep Learning
Models [17.65292847038642]
アフィドの寄生は作物生産、農村社会、世界の食料安全保障に重大な脅威をもたらす。
本稿では,アフィドクラスタの検出にディープラーニングモデルを用いることに主眼を置いている。
そこで本研究では,アフィドクラスターの検出により感染レベルを推定する手法を提案する。
論文 参考訳(メタデータ) (2023-08-10T23:53:07Z) - On the Real-Time Semantic Segmentation of Aphid Clusters in the Wild [13.402804225093801]
アフィドの感染は小麦やソルガムの畑に大きな損傷を与え、植物ウイルスを拡散させる。
農夫はしばしば化学殺虫剤を頼りにしており、これは田畑の広い範囲で非効率に適用される。
本稿では,アフィドのクラスタ分割にリアルタイムセマンティックセマンティックセマンティクスモデルを適用することを提案する。
論文 参考訳(メタデータ) (2023-07-17T19:04:39Z) - Evaluation of the potential of Near Infrared Hyperspectral Imaging for
monitoring the invasive brown marmorated stink bug [53.682955739083056]
BMSB(Halyomorpha halys)は、数種の作物を害する世界的重要性の害虫である。
本研究は、BMSB検体を検出する技術として、NIR-HSI(Near Infrared Hyperspectral Imaging)を実験室レベルで予備評価する。
論文 参考訳(メタデータ) (2023-01-19T11:37:20Z) - Towards Generating Large Synthetic Phytoplankton Datasets for Efficient
Monitoring of Harmful Algal Blooms [77.25251419910205]
有害な藻類(HAB)は養殖農場で重大な魚死を引き起こす。
現在、有害藻や他の植物プランクトンを列挙する標準的な方法は、顕微鏡でそれらを手動で観察し数えることである。
合成画像の生成にはGAN(Generative Adversarial Networks)を用いる。
論文 参考訳(メタデータ) (2022-08-03T20:15:55Z) - Potato Crop Stress Identification in Aerial Images using Deep
Learning-based Object Detection [60.83360138070649]
本稿では, 深層ニューラルネットワークを用いたジャガイモの空中画像解析手法を提案する。
主な目的は、植物レベルでの健康作物とストレス作物の自動空間認識を実証することである。
実験により、フィールド画像中の健康植物とストレス植物を識別し、平均Dice係数0.74を達成できることを示した。
論文 参考訳(メタデータ) (2021-06-14T21:57:40Z) - Pollen13K: A Large Scale Microscope Pollen Grain Image Dataset [63.05335933454068]
この研究は、1万3千以上の天体を含む最初の大規模花粉画像データセットを提示する。
本稿では, エアロバイオロジカルサンプリング, 顕微鏡画像取得, 物体検出, セグメンテーション, ラベル付けなど, 採用データ取得のステップに注目した。
論文 参考訳(メタデータ) (2020-07-09T10:33:31Z) - Quantification of groundnut leaf defects using image processing
algorithms [0.0]
本研究は, アンダラプラデシュの4地域を対象に, イメージ・プロセッシング技術を用いて, 被害したオオムギの葉面積を推定する試みである。
これらの4つの領域にわたる画像解析の結果、葉面積の約14~28%がグラウンドナッツ畑で影響を受けることが明らかとなった。
論文 参考訳(メタデータ) (2020-06-11T15:07:12Z) - Two-View Fine-grained Classification of Plant Species [66.75915278733197]
本研究では,2視点の葉のイメージ表現に基づく新しい手法と,植物種の粒度認識のための階層的分類戦略を提案する。
シームズ畳み込みニューラルネットワークに基づく深度測定は、多数のトレーニングサンプルへの依存を減らし、新しい植物種に拡張性を持たせるために用いられる。
論文 参考訳(メタデータ) (2020-05-18T21:57:47Z) - Automatic image-based identification and biomass estimation of
invertebrates [70.08255822611812]
時間を要する分類と分類は、どれだけの昆虫を処理できるかに強い制限を課す。
我々は、人間の専門家による分類と識別の標準的な手動アプローチを、自動画像ベース技術に置き換えることを提案する。
分類タスクには最先端のResnet-50とInceptionV3 CNNを使用する。
論文 参考訳(メタデータ) (2020-02-05T21:38:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。