Pluggable Neural Machine Translation Models via Memory-augmented Adapters
- URL: http://arxiv.org/abs/2307.06029v3
- Date: Thu, 21 Mar 2024 09:46:31 GMT
- Title: Pluggable Neural Machine Translation Models via Memory-augmented Adapters
- Authors: Yuzhuang Xu, Shuo Wang, Peng Li, Xuebo Liu, Xiaolong Wang, Weidong Liu, Yang Liu,
- Abstract summary: We propose a memory-augmented adapter to steer pretrained NMT models in a pluggable manner.
Specifically, we construct a multi-granular memory based on the user-provided text samples.
We also propose a training strategy using memory dropout to reduce spurious dependencies between the NMT model and the memory.
- Score: 25.26982333390014
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Although neural machine translation (NMT) models perform well in the general domain, it remains rather challenging to control their generation behavior to satisfy the requirement of different users. Given the expensive training cost and the data scarcity challenge of learning a new model from scratch for each user requirement, we propose a memory-augmented adapter to steer pretrained NMT models in a pluggable manner. Specifically, we construct a multi-granular memory based on the user-provided text samples and propose a new adapter architecture to combine the model representations and the retrieved results. We also propose a training strategy using memory dropout to reduce spurious dependencies between the NMT model and the memory. We validate our approach on both style- and domain-specific experiments and the results indicate that our method can outperform several representative pluggable baselines.
Related papers
- Transferable Post-training via Inverse Value Learning [83.75002867411263]
We propose modeling changes at the logits level during post-training using a separate neural network (i.e., the value network)
After training this network on a small base model using demonstrations, this network can be seamlessly integrated with other pre-trained models during inference.
We demonstrate that the resulting value network has broad transferability across pre-trained models of different parameter sizes.
arXiv Detail & Related papers (2024-10-28T13:48:43Z) - Dataless Knowledge Fusion by Merging Weights of Language Models [51.8162883997512]
Fine-tuning pre-trained language models has become the prevalent paradigm for building downstream NLP models.
This creates a barrier to fusing knowledge across individual models to yield a better single model.
We propose a dataless knowledge fusion method that merges models in their parameter space.
arXiv Detail & Related papers (2022-12-19T20:46:43Z) - A Memory Transformer Network for Incremental Learning [64.0410375349852]
We study class-incremental learning, a training setup in which new classes of data are observed over time for the model to learn from.
Despite the straightforward problem formulation, the naive application of classification models to class-incremental learning results in the "catastrophic forgetting" of previously seen classes.
One of the most successful existing methods has been the use of a memory of exemplars, which overcomes the issue of catastrophic forgetting by saving a subset of past data into a memory bank and utilizing it to prevent forgetting when training future tasks.
arXiv Detail & Related papers (2022-10-10T08:27:28Z) - Fitting a Directional Microstructure Model to Diffusion-Relaxation MRI
Data with Self-Supervised Machine Learning [2.8167227950959206]
Self-supervised machine learning is emerging as an attractive alternative to supervised learning.
In this paper, we demonstrate self-supervised machine learning model fitting for a directional microstructural model.
Our approach shows clear improvements in parameter estimation and computational time, compared to standard non-linear least squares fitting.
arXiv Detail & Related papers (2022-10-05T15:51:39Z) - Learning to Learn with Generative Models of Neural Network Checkpoints [71.06722933442956]
We construct a dataset of neural network checkpoints and train a generative model on the parameters.
We find that our approach successfully generates parameters for a wide range of loss prompts.
We apply our method to different neural network architectures and tasks in supervised and reinforcement learning.
arXiv Detail & Related papers (2022-09-26T17:59:58Z) - MoEBERT: from BERT to Mixture-of-Experts via Importance-Guided
Adaptation [68.30497162547768]
We propose MoEBERT, which uses a Mixture-of-Experts structure to increase model capacity and inference speed.
We validate the efficiency and effectiveness of MoEBERT on natural language understanding and question answering tasks.
arXiv Detail & Related papers (2022-04-15T23:19:37Z) - Recurrent Stacking of Layers in Neural Networks: An Application to
Neural Machine Translation [18.782750537161615]
We propose to share parameters across all layers thereby leading to a recurrently stacked neural network model.
We empirically demonstrate that the translation quality of a model that recurrently stacks a single layer 6 times, despite having significantly fewer parameters, approaches that of a model that stacks 6 layers where each layer has different parameters.
arXiv Detail & Related papers (2021-06-18T08:48:01Z) - Improved Semantic Role Labeling using Parameterized Neighborhood Memory
Adaptation [22.064890647610348]
We propose a parameterized neighborhood memory adaptive (PNMA) method that uses a parameterized representation of the nearest neighbors of tokens in a memory of activations.
We empirically show that PNMA consistently improves the SRL performance of the base model irrespective of types of word embeddings.
arXiv Detail & Related papers (2020-11-29T22:51:25Z) - Model Fusion via Optimal Transport [64.13185244219353]
We present a layer-wise model fusion algorithm for neural networks.
We show that this can successfully yield "one-shot" knowledge transfer between neural networks trained on heterogeneous non-i.i.d. data.
arXiv Detail & Related papers (2019-10-12T22:07:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.