Quantitative CLTs in Deep Neural Networks
- URL: http://arxiv.org/abs/2307.06092v5
- Date: Mon, 17 Jun 2024 12:51:09 GMT
- Title: Quantitative CLTs in Deep Neural Networks
- Authors: Stefano Favaro, Boris Hanin, Domenico Marinucci, Ivan Nourdin, Giovanni Peccati,
- Abstract summary: We study the distribution of a fully connected neural network with random Gaussian weights and biases.
We obtain quantitative bounds on normal approximations valid at large but finite $n$ and any fixed network depth.
Our bounds are strictly stronger in terms of their dependence on network width than any previously available in the literature.
- Score: 12.845031126178593
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study the distribution of a fully connected neural network with random Gaussian weights and biases in which the hidden layer widths are proportional to a large constant $n$. Under mild assumptions on the non-linearity, we obtain quantitative bounds on normal approximations valid at large but finite $n$ and any fixed network depth. Our theorems show both for the finite-dimensional distributions and the entire process, that the distance between a random fully connected network (and its derivatives) to the corresponding infinite width Gaussian process scales like $n^{-\gamma}$ for $\gamma>0$, with the exponent depending on the metric used to measure discrepancy. Our bounds are strictly stronger in terms of their dependence on network width than any previously available in the literature; in the one-dimensional case, we also prove that they are optimal, i.e., we establish matching lower bounds.
Related papers
- Wide Deep Neural Networks with Gaussian Weights are Very Close to
Gaussian Processes [1.0878040851638]
We show that the distance between the network output and the corresponding Gaussian approximation scales inversely with the width of the network, exhibiting faster convergence than the naive suggested by the central limit theorem.
We also apply our bounds to obtain theoretical approximations for the exact posterior distribution of the network, when the likelihood is a bounded Lipschitz function of the network output evaluated on a (finite) training set.
arXiv Detail & Related papers (2023-12-18T22:29:40Z) - The Onset of Variance-Limited Behavior for Networks in the Lazy and Rich
Regimes [75.59720049837459]
We study the transition from infinite-width behavior to this variance limited regime as a function of sample size $P$ and network width $N$.
We find that finite-size effects can become relevant for very small datasets on the order of $P* sim sqrtN$ for regression with ReLU networks.
arXiv Detail & Related papers (2022-12-23T04:48:04Z) - On the Effective Number of Linear Regions in Shallow Univariate ReLU
Networks: Convergence Guarantees and Implicit Bias [50.84569563188485]
We show that gradient flow converges in direction when labels are determined by the sign of a target network with $r$ neurons.
Our result may already hold for mild over- parameterization, where the width is $tildemathcalO(r)$ and independent of the sample size.
arXiv Detail & Related papers (2022-05-18T16:57:10Z) - On the Neural Tangent Kernel Analysis of Randomly Pruned Neural Networks [91.3755431537592]
We study how random pruning of the weights affects a neural network's neural kernel (NTK)
In particular, this work establishes an equivalence of the NTKs between a fully-connected neural network and its randomly pruned version.
arXiv Detail & Related papers (2022-03-27T15:22:19Z) - Quantitative Gaussian Approximation of Randomly Initialized Deep Neural
Networks [1.0878040851638]
We show how the hidden and output layers sizes affect the Gaussian behaviour of the network.
Our explicit inequalities indicate how the hidden and output layers sizes affect the Gaussian behaviour of the network.
arXiv Detail & Related papers (2022-03-14T14:20:19Z) - Random Neural Networks in the Infinite Width Limit as Gaussian Processes [16.75218291152252]
This article gives a new proof that fully connected neural networks with random weights and biases converge to Gaussian processes in the regime where the input dimension, output dimension, and depth are kept fixed.
Unlike prior work, convergence is shown assuming only moment conditions for the distribution of weights and for quite general non-linearities.
arXiv Detail & Related papers (2021-07-04T07:00:20Z) - Large-width functional asymptotics for deep Gaussian neural networks [2.7561479348365734]
We consider fully connected feed-forward deep neural networks where weights and biases are independent and identically distributed according to Gaussian distributions.
Our results contribute to recent theoretical studies on the interplay between infinitely wide deep neural networks and processes.
arXiv Detail & Related papers (2021-02-20T10:14:37Z) - A Convergence Theory Towards Practical Over-parameterized Deep Neural
Networks [56.084798078072396]
We take a step towards closing the gap between theory and practice by significantly improving the known theoretical bounds on both the network width and the convergence time.
We show that convergence to a global minimum is guaranteed for networks with quadratic widths in the sample size and linear in their depth at a time logarithmic in both.
Our analysis and convergence bounds are derived via the construction of a surrogate network with fixed activation patterns that can be transformed at any time to an equivalent ReLU network of a reasonable size.
arXiv Detail & Related papers (2021-01-12T00:40:45Z) - Bayesian Deep Ensembles via the Neural Tangent Kernel [49.569912265882124]
We explore the link between deep ensembles and Gaussian processes (GPs) through the lens of the Neural Tangent Kernel (NTK)
We introduce a simple modification to standard deep ensembles training, through addition of a computationally-tractable, randomised and untrainable function to each ensemble member.
We prove that our Bayesian deep ensembles make more conservative predictions than standard deep ensembles in the infinite width limit.
arXiv Detail & Related papers (2020-07-11T22:10:52Z) - Stable behaviour of infinitely wide deep neural networks [8.000374471991247]
We consider fully connected feed-forward deep neural networks (NNs) where weights and biases are independent and identically distributed.
We show that the infinite wide limit of the NN, under suitable scaling on the weights, is a process whose finite-dimensional distributions are stable distributions.
arXiv Detail & Related papers (2020-03-01T04:07:30Z) - On Random Kernels of Residual Architectures [93.94469470368988]
We derive finite width and depth corrections for the Neural Tangent Kernel (NTK) of ResNets and DenseNets.
Our findings show that in ResNets, convergence to the NTK may occur when depth and width simultaneously tend to infinity.
In DenseNets, however, convergence of the NTK to its limit as the width tends to infinity is guaranteed.
arXiv Detail & Related papers (2020-01-28T16:47:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.