論文の概要: Deep learning for dynamic graphs: models and benchmarks
- arxiv url: http://arxiv.org/abs/2307.06104v4
- Date: Tue, 9 Apr 2024 07:41:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-10 20:36:08.063901
- Title: Deep learning for dynamic graphs: models and benchmarks
- Title(参考訳): 動的グラフのためのディープラーニング:モデルとベンチマーク
- Authors: Alessio Gravina, Davide Bacciu,
- Abstract要約: 近年,Deep Graph Networks (DGNs) の研究が進展し,グラフ上の学習領域が成熟した。
この研究分野の成長にもかかわらず、まだ解決されていない重要な課題がまだ残っている。
- 参考スコア(独自算出の注目度): 16.851689741256912
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent progress in research on Deep Graph Networks (DGNs) has led to a maturation of the domain of learning on graphs. Despite the growth of this research field, there are still important challenges that are yet unsolved. Specifically, there is an urge of making DGNs suitable for predictive tasks on realworld systems of interconnected entities, which evolve over time. With the aim of fostering research in the domain of dynamic graphs, at first, we survey recent advantages in learning both temporal and spatial information, providing a comprehensive overview of the current state-of-the-art in the domain of representation learning for dynamic graphs. Secondly, we conduct a fair performance comparison among the most popular proposed approaches on node and edge-level tasks, leveraging rigorous model selection and assessment for all the methods, thus establishing a sound baseline for evaluating new architectures and approaches
- Abstract(参考訳): 近年,Deep Graph Networks (DGNs) の研究が進展し,グラフ上の学習領域が成熟した。
この研究分野の成長にもかかわらず、まだ解決されていない重要な課題がまだ残っている。
具体的には、時間とともに進化する相互接続された実体の現実的なシステムにおいて、予測タスクに適したDGNを作ることが望まれている。
動的グラフの領域における研究を促進することを目的として、まず、時間情報と空間情報の両方を学ぶことの最近の利点を調査し、動的グラフの表現学習領域における現在の最先端技術の概要を概観する。
第二に、ノードとエッジレベルのタスクに関する最も一般的な提案手法と比較して、厳密なモデル選択と評価を活用して、新しいアーキテクチャとアプローチを評価するためのサウンドベースラインを確立する。
関連論文リスト
- Revisiting Graph Neural Networks on Graph-level Tasks: Comprehensive Experiments, Analysis, and Improvements [54.006506479865344]
グラフレベルグラフニューラルネットワーク(GNN)のための統一評価フレームワークを提案する。
このフレームワークは、さまざまなデータセットにわたるGNNを評価するための標準化された設定を提供する。
また,表現性の向上と一般化機能を備えた新しいGNNモデルを提案する。
論文 参考訳(メタデータ) (2025-01-01T08:48:53Z) - Towards Data-centric Machine Learning on Directed Graphs: a Survey [23.498557237805414]
本稿では,有向グラフ学習研究のための新しい分類法を提案する。
我々はこれらの手法をデータ中心の観点から再検討し、データ表現の理解と改善に重点を置いている。
我々はこの分野における主要な機会と課題を特定し、有向グラフ学習における将来の研究と開発を導く洞察を提供する。
論文 参考訳(メタデータ) (2024-11-28T06:09:12Z) - Information propagation dynamics in Deep Graph Networks [1.8130068086063336]
Deep Graph Networks(DGN)は、構造化情報の処理と学習が可能なディープラーニングモデルのファミリとして登場した。
この論文は、静的グラフと動的グラフのためのDGNの内部の情報伝達のダイナミクスを考察し、動的システムとしての設計に焦点をあてる。
論文 参考訳(メタデータ) (2024-10-14T12:55:51Z) - Node-Time Conditional Prompt Learning In Dynamic Graphs [14.62182210205324]
DYGPROMPTは動的グラフモデリングのための新しい事前学習および迅速な学習フレームワークである。
我々はノードと時間の特徴が相互に特徴付けることを認識し、下流タスクにおけるノード時間パターンの進化をモデル化するための2つの条件ネットを提案する。
論文 参考訳(メタデータ) (2024-05-22T19:10:24Z) - Graph Learning under Distribution Shifts: A Comprehensive Survey on
Domain Adaptation, Out-of-distribution, and Continual Learning [53.81365215811222]
グラフ学習の文脈における分布変化に対処する最新のアプローチ、戦略、洞察のレビューと要約を提供する。
既存のグラフ学習手法を,グラフ領域適応学習,グラフ配布学習,グラフ連続学習など,いくつかの重要なシナリオに分類する。
本稿では,この領域における現状を体系的に分析し,分散シフト下でのグラフ学習の可能性と今後の方向性について論じる。
論文 参考訳(メタデータ) (2024-02-26T07:52:40Z) - Towards Graph Foundation Models: A Survey and Beyond [66.37994863159861]
ファンデーションモデルは、さまざまな人工知能アプリケーションにおいて重要なコンポーネントとして現れてきた。
基礎モデルがグラフ機械学習研究者を一般化し、適応させる能力は、新しいグラフ学習パラダイムを開発する可能性について議論する。
本稿では,グラフ基礎モデル(GFM)の概念を紹介し,その重要な特徴と基礎技術について概説する。
論文 参考訳(メタデータ) (2023-10-18T09:31:21Z) - A Comprehensive Survey on Deep Graph Representation Learning [26.24869157855632]
グラフ表現学習は、高次元スパースグラフ構造化データを低次元密度ベクトルに符号化することを目的としている。
従来の手法ではモデル能力に制限があり、学習性能に制限がある。
深層グラフ表現学習は、浅い(伝統的な)方法よりも大きな可能性と利点を示している。
論文 参考訳(メタデータ) (2023-04-11T08:23:52Z) - Graph Neural Networks for temporal graphs: State of the art, open
challenges, and opportunities [15.51428011794213]
グラフニューラルネットワーク(GNN)は、(静的)グラフ構造化データを学ぶための主要なパラダイムとなっている。
近年, 時間グラフのためのGNNベースのモデルが, GNNの能力を拡張すべく, 有望な研究領域として浮上している。
本稿では、時間的GNNの現状を概観し、学習設定とタスクの厳密な形式化を導入する。
調査は、研究と応用の両方の観点から、この分野における最も関連性の高いオープン課題に関する議論で締めくくります。
論文 参考訳(メタデータ) (2023-02-02T11:12:51Z) - Graph Pooling for Graph Neural Networks: Progress, Challenges, and
Opportunities [128.55790219377315]
グラフニューラルネットワークは多くのグラフレベルのタスクの主要なアーキテクチャとして登場した。
グラフプーリングは、グラフ全体の全体的グラフレベル表現を得るためには不可欠である。
論文 参考訳(メタデータ) (2022-04-15T04:02:06Z) - Towards Deeper Graph Neural Networks [63.46470695525957]
グラフ畳み込みは近傍の集約を行い、最も重要なグラフ操作の1つである。
いくつかの最近の研究で、この性能劣化は過度に滑らかな問題に起因している。
本研究では,大きな受容領域からの情報を適応的に組み込むディープ適応グラフニューラルネットワーク(DAGNN)を提案する。
論文 参考訳(メタデータ) (2020-07-18T01:11:14Z) - Graph Representation Learning via Graphical Mutual Information
Maximization [86.32278001019854]
本稿では,入力グラフとハイレベルな隠蔽表現との相関を測る新しい概念であるGMIを提案する。
我々は,グラフニューラルエンコーダの入力と出力の間でGMIを最大化することで訓練された教師なし学習モデルを開発する。
論文 参考訳(メタデータ) (2020-02-04T08:33:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。