Locally Adaptive Federated Learning
- URL: http://arxiv.org/abs/2307.06306v2
- Date: Tue, 14 May 2024 08:27:48 GMT
- Title: Locally Adaptive Federated Learning
- Authors: Sohom Mukherjee, Nicolas Loizou, Sebastian U. Stich,
- Abstract summary: Federated learning is a paradigm of distributed machine learning in which multiple clients coordinate with a central server to learn a model.
Standard federated optimization methods such as Federated Averaging (FedAvg) ensure generalization among the clients.
We propose locally federated learning algorithms, that leverage the local geometric information for each client function.
- Score: 30.19411641685853
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning is a paradigm of distributed machine learning in which multiple clients coordinate with a central server to learn a model, without sharing their own training data. Standard federated optimization methods such as Federated Averaging (FedAvg) ensure balance among the clients by using the same stepsize for local updates on all clients. However, this means that all clients need to respect the global geometry of the function which could yield slow convergence. In this work, we propose locally adaptive federated learning algorithms, that leverage the local geometric information for each client function. We show that such locally adaptive methods with uncoordinated stepsizes across all clients can be particularly efficient in interpolated (overparameterized) settings, and analyze their convergence in the presence of heterogeneous data for convex and strongly convex settings. We validate our theoretical claims by performing illustrative experiments for both i.i.d. non-i.i.d. cases. Our proposed algorithms match the optimization performance of tuned FedAvg in the convex setting, outperform FedAvg as well as state-of-the-art adaptive federated algorithms like FedAMS for non-convex experiments, and come with superior generalization performance.
Related papers
- Collaborative and Efficient Personalization with Mixtures of Adaptors [5.195669033269619]
We propose a parameter-efficient framework to tackle multi-task learning problems.
We call our framework Federated Low-Rank Adaptive Learning (FLoRAL)
We show promising experimental results on synthetic datasets and real-world federated multi-task problems.
arXiv Detail & Related papers (2024-10-04T15:11:15Z) - Towards Hyper-parameter-free Federated Learning [1.3682156035049038]
We introduce algorithms for automated scaling of global model updates.
In first algorithm, we establish that a descent-ensuring step-size regime at the clients ensures descent for the server objective.
Second algorithm shows that the average of objective values of sampled clients is a practical and effective substitute for the value server required for computing the scaling factor.
arXiv Detail & Related papers (2024-08-30T09:35:36Z) - FedCAda: Adaptive Client-Side Optimization for Accelerated and Stable Federated Learning [57.38427653043984]
Federated learning (FL) has emerged as a prominent approach for collaborative training of machine learning models across distributed clients.
We introduce FedCAda, an innovative federated client adaptive algorithm designed to tackle this challenge.
We demonstrate that FedCAda outperforms the state-of-the-art methods in terms of adaptability, convergence, stability, and overall performance.
arXiv Detail & Related papers (2024-05-20T06:12:33Z) - FedLALR: Client-Specific Adaptive Learning Rates Achieve Linear Speedup
for Non-IID Data [54.81695390763957]
Federated learning is an emerging distributed machine learning method.
We propose a heterogeneous local variant of AMSGrad, named FedLALR, in which each client adjusts its learning rate.
We show that our client-specified auto-tuned learning rate scheduling can converge and achieve linear speedup with respect to the number of clients.
arXiv Detail & Related papers (2023-09-18T12:35:05Z) - Towards Instance-adaptive Inference for Federated Learning [80.38701896056828]
Federated learning (FL) is a distributed learning paradigm that enables multiple clients to learn a powerful global model by aggregating local training.
In this paper, we present a novel FL algorithm, i.e., FedIns, to handle intra-client data heterogeneity by enabling instance-adaptive inference in the FL framework.
Our experiments show that our FedIns outperforms state-of-the-art FL algorithms, e.g., a 6.64% improvement against the top-performing method with less than 15% communication cost on Tiny-ImageNet.
arXiv Detail & Related papers (2023-08-11T09:58:47Z) - Neural Collapse Inspired Federated Learning with Non-iid Data [31.576588815816095]
Non-independent and identically distributed (non-iid) characteristics cause significant differences in local updates and affect the performance of the central server.
Inspired by the phenomenon of neural collapse, we force each client to be optimized toward an optimal global structure for classification.
Our method can improve the performance with faster convergence speed on different-size datasets.
arXiv Detail & Related papers (2023-03-27T05:29:53Z) - Personalizing Federated Learning with Over-the-Air Computations [84.8089761800994]
Federated edge learning is a promising technology to deploy intelligence at the edge of wireless networks in a privacy-preserving manner.
Under such a setting, multiple clients collaboratively train a global generic model under the coordination of an edge server.
This paper presents a distributed training paradigm that employs analog over-the-air computation to address the communication bottleneck.
arXiv Detail & Related papers (2023-02-24T08:41:19Z) - Straggler-Resilient Personalized Federated Learning [55.54344312542944]
Federated learning allows training models from samples distributed across a large network of clients while respecting privacy and communication restrictions.
We develop a novel algorithmic procedure with theoretical speedup guarantees that simultaneously handles two of these hurdles.
Our method relies on ideas from representation learning theory to find a global common representation using all clients' data and learn a user-specific set of parameters leading to a personalized solution for each client.
arXiv Detail & Related papers (2022-06-05T01:14:46Z) - Local Adaptivity in Federated Learning: Convergence and Consistency [25.293584783673413]
Federated learning (FL) framework trains a machine learning model using decentralized data stored at edge client devices by periodically aggregating locally trained models.
We show in both theory and practice that while local adaptive methods can accelerate convergence, they can cause a non-vanishing solution bias.
We propose correction techniques to overcome this inconsistency and complement the local adaptive methods for FL.
arXiv Detail & Related papers (2021-06-04T07:36:59Z) - Exploiting Shared Representations for Personalized Federated Learning [54.65133770989836]
We propose a novel federated learning framework and algorithm for learning a shared data representation across clients and unique local heads for each client.
Our algorithm harnesses the distributed computational power across clients to perform many local-updates with respect to the low-dimensional local parameters for every update of the representation.
This result is of interest beyond federated learning to a broad class of problems in which we aim to learn a shared low-dimensional representation among data distributions.
arXiv Detail & Related papers (2021-02-14T05:36:25Z) - Adaptive Federated Optimization [43.78438670284309]
In Federated learning, a large number of clients coordinate with a central server to learn a model without sharing their own data.
adaptive optimization methods have notable success in combating such issues.
We show that the use adaptives can significantly improve the performance of federated learning.
arXiv Detail & Related papers (2020-02-29T16:37:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.