Towards Hyper-parameter-free Federated Learning
- URL: http://arxiv.org/abs/2408.17145v1
- Date: Fri, 30 Aug 2024 09:35:36 GMT
- Title: Towards Hyper-parameter-free Federated Learning
- Authors: Geetika, Drishya Uniyal, Bapi Chatterjee,
- Abstract summary: We introduce algorithms for automated scaling of global model updates.
In first algorithm, we establish that a descent-ensuring step-size regime at the clients ensures descent for the server objective.
Second algorithm shows that the average of objective values of sampled clients is a practical and effective substitute for the value server required for computing the scaling factor.
- Score: 1.3682156035049038
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The adaptive synchronization techniques in federated learning (FL) for scaled global model updates show superior performance over the vanilla federated averaging (FedAvg) scheme. However, existing methods employ additional tunable hyperparameters on the server to determine the scaling factor. A contrasting approach is automated scaling analogous to tuning-free step-size schemes in stochastic gradient descent (SGD) methods, which offer competitive convergence rates and exhibit good empirical performance. In this work, we introduce two algorithms for automated scaling of global model updates. In our first algorithm, we establish that a descent-ensuring step-size regime at the clients ensures descent for the server objective. We show that such a scheme enables linear convergence for strongly convex federated objectives. Our second algorithm shows that the average of objective values of sampled clients is a practical and effective substitute for the objective function value at the server required for computing the scaling factor, whose computation is otherwise not permitted. Our extensive empirical results show that the proposed methods perform at par or better than the popular federated learning algorithms for both convex and non-convex problems. Our work takes a step towards designing hyper-parameter-free federated learning.
Related papers
- Pursuing Overall Welfare in Federated Learning through Sequential Decision Making [10.377683220196873]
In traditional federated learning, a single global model cannot perform equally well for all clients.
Our work reveals that existing fairness-aware aggregation strategies can be unified into an online convex optimization framework.
AAggFF achieves better degree of client-level fairness than existing methods in both practical settings.
arXiv Detail & Related papers (2024-05-31T14:15:44Z) - FedCAda: Adaptive Client-Side Optimization for Accelerated and Stable Federated Learning [57.38427653043984]
Federated learning (FL) has emerged as a prominent approach for collaborative training of machine learning models across distributed clients.
We introduce FedCAda, an innovative federated client adaptive algorithm designed to tackle this challenge.
We demonstrate that FedCAda outperforms the state-of-the-art methods in terms of adaptability, convergence, stability, and overall performance.
arXiv Detail & Related papers (2024-05-20T06:12:33Z) - Adaptive Federated Learning Over the Air [108.62635460744109]
We propose a federated version of adaptive gradient methods, particularly AdaGrad and Adam, within the framework of over-the-air model training.
Our analysis shows that the AdaGrad-based training algorithm converges to a stationary point at the rate of $mathcalO( ln(T) / T 1 - frac1alpha ).
arXiv Detail & Related papers (2024-03-11T09:10:37Z) - FedLALR: Client-Specific Adaptive Learning Rates Achieve Linear Speedup
for Non-IID Data [54.81695390763957]
Federated learning is an emerging distributed machine learning method.
We propose a heterogeneous local variant of AMSGrad, named FedLALR, in which each client adjusts its learning rate.
We show that our client-specified auto-tuned learning rate scheduling can converge and achieve linear speedup with respect to the number of clients.
arXiv Detail & Related papers (2023-09-18T12:35:05Z) - Locally Adaptive Federated Learning [30.19411641685853]
Federated learning is a paradigm of distributed machine learning in which multiple clients coordinate with a central server to learn a model.
Standard federated optimization methods such as Federated Averaging (FedAvg) ensure generalization among the clients.
We propose locally federated learning algorithms, that leverage the local geometric information for each client function.
arXiv Detail & Related papers (2023-07-12T17:02:32Z) - Stochastic Unrolled Federated Learning [85.6993263983062]
We introduce UnRolled Federated learning (SURF), a method that expands algorithm unrolling to federated learning.
Our proposed method tackles two challenges of this expansion, namely the need to feed whole datasets to the unrolleds and the decentralized nature of federated learning.
arXiv Detail & Related papers (2023-05-24T17:26:22Z) - FedDA: Faster Framework of Local Adaptive Gradient Methods via Restarted
Dual Averaging [104.41634756395545]
Federated learning (FL) is an emerging learning paradigm to tackle massively distributed data.
We propose textbfFedDA, a novel framework for local adaptive gradient methods.
We show that textbfFedDA-MVR is the first adaptive FL algorithm that achieves this rate.
arXiv Detail & Related papers (2023-02-13T05:10:30Z) - Faster Adaptive Federated Learning [84.38913517122619]
Federated learning has attracted increasing attention with the emergence of distributed data.
In this paper, we propose an efficient adaptive algorithm (i.e., FAFED) based on momentum-based variance reduced technique in cross-silo FL.
arXiv Detail & Related papers (2022-12-02T05:07:50Z) - Gradient Masked Averaging for Federated Learning [24.687254139644736]
Federated learning allows a large number of clients with heterogeneous data to coordinate learning of a unified global model.
Standard FL algorithms involve averaging of model parameters or gradient updates to approximate the global model at the server.
We propose a gradient masked averaging approach for FL as an alternative to the standard averaging of client updates.
arXiv Detail & Related papers (2022-01-28T08:42:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.