Optimised Least Squares Approach for Accurate Polygon and Ellipse
Fitting
- URL: http://arxiv.org/abs/2307.06528v2
- Date: Thu, 19 Oct 2023 08:46:05 GMT
- Title: Optimised Least Squares Approach for Accurate Polygon and Ellipse
Fitting
- Authors: Yiming Quan, Shian Chen
- Abstract summary: The method is validated on synthetic and real-world data sets.
The proposed method is a powerful tool for shape fitting in computer vision and geometry processing applications.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study presents a generalised least squares based method for fitting
polygons and ellipses to data points. The method is based on a trigonometric
fitness function that approximates a unit shape accurately, making it
applicable to various geometric shapes with minimal fitting parameters.
Furthermore, the proposed method does not require any constraints and can
handle incomplete data. The method is validated on synthetic and real-world
data sets and compared with the existing methods in the literature for polygon
and ellipse fitting. The test results show that the method achieves high
accuracy and outperforms the referenced methods in terms of root-mean-square
error, especially for noise-free data. The proposed method is a powerful tool
for shape fitting in computer vision and geometry processing applications.
Related papers
- Adaptive Surface Normal Constraint for Geometric Estimation from Monocular Images [56.86175251327466]
We introduce a novel approach to learn geometries such as depth and surface normal from images while incorporating geometric context.
Our approach extracts geometric context that encodes the geometric variations present in the input image and correlates depth estimation with geometric constraints.
Our method unifies depth and surface normal estimations within a cohesive framework, which enables the generation of high-quality 3D geometry from images.
arXiv Detail & Related papers (2024-02-08T17:57:59Z) - Geometrically Consistent Partial Shape Matching [50.29468769172704]
Finding correspondences between 3D shapes is a crucial problem in computer vision and graphics.
An often neglected but essential property of matching geometrics is consistency.
We propose a novel integer linear programming partial shape matching formulation.
arXiv Detail & Related papers (2023-09-10T12:21:42Z) - Robust Ellipse Fitting Based on Maximum Correntropy Criterion With
Variable Center [25.20786549560683]
We develop an ellipse fitting method that is robust to outliers based on conerenren.
The proposed method is shown to have significantly better performance over the existing methods in both simulated data and real images.
arXiv Detail & Related papers (2022-10-24T01:59:22Z) - Probabilistic Registration for Gaussian Process 3D shape modelling in
the presence of extensive missing data [63.8376359764052]
We propose a shape fitting/registration method based on a Gaussian Processes formulation, suitable for shapes with extensive regions of missing data.
Experiments are conducted both for a 2D small dataset with diverse transformations and a 3D dataset of ears.
arXiv Detail & Related papers (2022-03-26T16:48:27Z) - DPFM: Deep Partial Functional Maps [28.045544079256686]
We consider the problem of computing dense correspondences between non-rigid shapes with potentially significant partiality.
We propose the first learning method aimed directly at partial non-rigid shape correspondence.
Our approach uses the functional map framework, can be trained in a supervised or unsupervised manner, and learns descriptors directly from the data.
arXiv Detail & Related papers (2021-10-19T14:05:37Z) - Manifold Hypothesis in Data Analysis: Double Geometrically-Probabilistic
Approach to Manifold Dimension Estimation [92.81218653234669]
We present new approach to manifold hypothesis checking and underlying manifold dimension estimation.
Our geometrical method is a modification for sparse data of a well-known box-counting algorithm for Minkowski dimension calculation.
Experiments on real datasets show that the suggested approach based on two methods combination is powerful and effective.
arXiv Detail & Related papers (2021-07-08T15:35:54Z) - Adaptive Surface Normal Constraint for Depth Estimation [102.7466374038784]
We introduce a simple yet effective method, named Adaptive Surface Normal (ASN) constraint, to correlate the depth estimation with geometric consistency.
Our method can faithfully reconstruct the 3D geometry and is robust to local shape variations, such as boundaries, sharp corners and noises.
arXiv Detail & Related papers (2021-03-29T10:36:25Z) - New Methods for Detecting Concentric Objects With High Accuracy [0.0]
Fitting geometric objects to digitized data is an important problem in many areas such as iris detection, autonomous navigation, and industrial robotics operations.
There are two common approaches to fitting geometric shapes to data: the geometric (iterative) approach and algebraic (non-iterative) approach.
We develop new estimators, which can be used as reliable initial guesses for other iterative methods.
arXiv Detail & Related papers (2021-02-16T08:19:18Z) - Deep Magnification-Flexible Upsampling over 3D Point Clouds [103.09504572409449]
We propose a novel end-to-end learning-based framework to generate dense point clouds.
We first formulate the problem explicitly, which boils down to determining the weights and high-order approximation errors.
Then, we design a lightweight neural network to adaptively learn unified and sorted weights as well as the high-order refinements.
arXiv Detail & Related papers (2020-11-25T14:00:18Z) - Deep Geometric Functional Maps: Robust Feature Learning for Shape
Correspondence [31.840880075039944]
We present a novel learning-based approach for computing correspondences between non-rigid 3D shapes.
Key to our method is a feature-extraction network that learns directly from raw shape geometry.
arXiv Detail & Related papers (2020-03-31T15:20:17Z) - Geometry, Computation, and Optimality in Stochastic Optimization [24.154336772159745]
We study computational and statistical consequences of problem geometry in and online optimization.
By focusing on constraint set and gradient geometry, we characterize the problem families for which- and adaptive-gradient methods are (minimax) optimal.
arXiv Detail & Related papers (2019-09-23T16:14:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.