論文の概要: Image Transformation Sequence Retrieval with General Reinforcement
Learning
- arxiv url: http://arxiv.org/abs/2307.06630v1
- Date: Thu, 13 Jul 2023 08:56:20 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-14 15:16:39.807910
- Title: Image Transformation Sequence Retrieval with General Reinforcement
Learning
- Title(参考訳): 一般強化学習による画像変換シーケンス検索
- Authors: Enrique Mas-Candela, Antonio R\'ios-Vila, Jorge Calvo-Zaragoza
- Abstract要約: 本稿では,画像変換シークエンス検索(ITSR)タスクを提案する。このタスクでは,モデルがそれぞれ,ソースとして機能する2つの画像間の変換シーケンスを検索しなければならない。
本稿では,モンテカルロ木探索 (MCTS) のようなモデルに基づく強化学習とディープニューラルネットワークを組み合わせたTHRの解を提案する。
本実験は,提案手法を教師あり訓練と比較した,合成領域と実領域のベンチマークを提供する。
- 参考スコア(独自算出の注目度): 6.423239719448169
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this work, the novel Image Transformation Sequence Retrieval (ITSR) task
is presented, in which a model must retrieve the sequence of transformations
between two given images that act as source and target, respectively. Given
certain characteristics of the challenge such as the multiplicity of a correct
sequence or the correlation between consecutive steps of the process, we
propose a solution to ITSR using a general model-based Reinforcement Learning
such as Monte Carlo Tree Search (MCTS), which is combined with a deep neural
network. Our experiments provide a benchmark in both synthetic and real
domains, where the proposed approach is compared with supervised training. The
results report that a model trained with MCTS is able to outperform its
supervised counterpart in both the simplest and the most complex cases. Our
work draws interesting conclusions about the nature of ITSR and its associated
challenges.
- Abstract(参考訳): 本研究では,画像変換シーケンス検索(itsr)タスクについて,それぞれソースとターゲットとして振る舞う2つの画像間の変換シーケンスをモデルが取得する必要があることを示す。
直列の多重性や過程の連続ステップ間の相関性などの課題の特徴を考慮し,深いニューラルネットワークと組み合わされたモンテカルロ木探索(mcts)のような一般モデルに基づく強化学習を用いたitsrの解法を提案する。
本実験は,提案手法を教師あり訓練と比較した,合成領域と実領域のベンチマークを提供する。
その結果、mctsで訓練されたモデルは、最も単純なケースと最も複雑なケースの両方において、教師付きモデルよりも優れています。
我々の研究は、ITSRの性質とその関連する課題について興味深い結論を導いている。
関連論文リスト
- Causal Image Modeling for Efficient Visual Understanding [41.87857129429512]
本稿では,イメージをパッチトークンのシーケンスとして扱うアドベンチャーシリーズモデルを紹介し,一方向言語モデルを用いて視覚表現を学習する。
このモデリングパラダイムにより、列長に対して線形な複雑度を持つ繰り返し定式化による画像の処理が可能となる。
本稿では,画像入力を因果推論フレームワークにシームレスに統合する2つの簡単な設計を提案する。
論文 参考訳(メタデータ) (2024-10-10T04:14:52Z) - Rotated Multi-Scale Interaction Network for Referring Remote Sensing Image Segmentation [63.15257949821558]
Referring Remote Sensing Image (RRSIS)は、コンピュータビジョンと自然言語処理を組み合わせた新しい課題である。
従来の参照画像(RIS)アプローチは、空中画像に見られる複雑な空間スケールと向きによって妨げられている。
本稿ではRMSIN(Rotated Multi-Scale Interaction Network)を紹介する。
論文 参考訳(メタデータ) (2023-12-19T08:14:14Z) - Symmetrical Bidirectional Knowledge Alignment for Zero-Shot Sketch-Based
Image Retrieval [69.46139774646308]
本稿ではゼロショットスケッチベース画像検索(ZS-SBIR)の問題点について検討する。
目に見えないカテゴリのスケッチをクエリとして使用して、同じカテゴリのイメージにマッチさせることが目的だ。
ゼロショットスケッチに基づく画像検索(SBKA)のための新しい対称双方向知識アライメントを提案する。
論文 参考訳(メタデータ) (2023-12-16T04:50:34Z) - ICF-SRSR: Invertible scale-Conditional Function for Self-Supervised
Real-world Single Image Super-Resolution [60.90817228730133]
単一画像超解像(SISR)は、与えられた低解像度(LR)画像を高解像度(HR)にアップサンプリングすることを目的とした課題である。
近年のアプローチは、単純化されたダウンサンプリング演算子によって劣化したシミュレーションLR画像に基づいて訓練されている。
Invertible Scale-Conditional Function (ICF) を提案する。これは入力画像をスケールし、異なるスケール条件で元の入力を復元する。
論文 参考訳(メタデータ) (2023-07-24T12:42:45Z) - A Unifying Multi-sampling-ratio CS-MRI Framework With Two-grid-cycle
Correction and Geometric Prior Distillation [7.643154460109723]
本稿では,モデルベースと深層学習に基づく手法の利点を融合して,深層展開型マルチサンプリング比CS-MRIフレームワークを提案する。
マルチグリッドアルゴリズムにインスパイアされ、まずCS-MRIに基づく最適化アルゴリズムを補正蒸留方式に組み込む。
各段の圧縮サンプリング比から適応的なステップ長と雑音レベルを学習するために条件モジュールを用いる。
論文 参考訳(メタデータ) (2022-05-14T13:36:27Z) - Universal Generative Modeling for Calibration-free Parallel Mr Imaging [13.875986147033002]
キャリブレーションフリー並列MRIのための教師なしディープラーニングフレームワークを提案する。
我々は、ウェーブレット変換と適応的な反復戦略の両方の利点を統一されたフレームワークで活用する。
我々は、ウェーブレットテンソルをネットワーク入力として形成することにより、強力な雑音条件スコアネットワークを訓練する。
論文 参考訳(メタデータ) (2022-01-25T10:05:39Z) - Self-supervised Correlation Mining Network for Person Image Generation [9.505343361614928]
人物画像生成は、ソース画像の非剛性変形を実現することを目的としている。
特徴空間のソース画像を再構成する自己教師付き相関マイニングネットワーク(SCM-Net)を提案する。
クロススケールポーズ変換の忠実度を向上させるために,グラフに基づく身体構造保持損失を提案する。
論文 参考訳(メタデータ) (2021-11-26T03:57:46Z) - One Network to Solve Them All: A Sequential Multi-Task Joint Learning
Network Framework for MR Imaging Pipeline [12.684219884940056]
組み合わせたエンドツーエンドのパイプラインを訓練するために、連続的なマルチタスク共同学習ネットワークモデルが提案される。
提案手法は,再構成とセグメント化の両面から,他のSOTA手法よりも優れた性能を示すMBBデータセット上で検証されている。
論文 参考訳(メタデータ) (2021-05-14T05:55:27Z) - IMAGINE: Image Synthesis by Image-Guided Model Inversion [79.4691654458141]
IMGE-Guided Model INvErsion (IMAGINE) と呼ばれるインバージョンベースの手法を導入し、高品質で多様な画像を生成します。
我々は,事前学習した分類器から画像意味論の知識を活用し,妥当な世代を実現する。
IMAGINEは,1)合成中の意味的特異性制約を同時に実施し,2)ジェネレータトレーニングなしでリアルな画像を生成し,3)生成過程を直感的に制御する。
論文 参考訳(メタデータ) (2021-04-13T02:00:24Z) - MOGAN: Morphologic-structure-aware Generative Learning from a Single
Image [59.59698650663925]
近年,1つの画像のみに基づく生成モデルによる完全学習が提案されている。
多様な外観のランダムなサンプルを生成するMOGANというMOrphologic-structure-aware Generative Adversarial Networkを紹介します。
合理的な構造の維持や外観の変化など、内部機能に重点を置いています。
論文 参考訳(メタデータ) (2021-03-04T12:45:23Z) - Task-Feature Collaborative Learning with Application to Personalized
Attribute Prediction [166.87111665908333]
本稿では,TFCL(Task-Feature Collaborative Learning)と呼ばれる新しいマルチタスク学習手法を提案する。
具体的には、まず、特徴とタスクの協調的なグループ化を活用するために、不均一なブロック対角構造正規化器を用いたベースモデルを提案する。
実際の拡張として,重なり合う機能と難易度を区別することで,基本モデルを拡張します。
論文 参考訳(メタデータ) (2020-04-29T02:32:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。