S-HR-VQVAE: Sequential Hierarchical Residual Learning Vector Quantized Variational Autoencoder for Video Prediction
- URL: http://arxiv.org/abs/2307.06701v2
- Date: Tue, 11 Jun 2024 13:54:55 GMT
- Title: S-HR-VQVAE: Sequential Hierarchical Residual Learning Vector Quantized Variational Autoencoder for Video Prediction
- Authors: Mohammad Adiban, Kalin Stefanov, Sabato Marco Siniscalchi, Giampiero Salvi,
- Abstract summary: We propose a sequential hierarchical residual learning capability of quantized variation vector autocoderen (SHR-VQE)
We show that SHR-VQE can better deal with chief challenges video prediction, including learning intemporal data, handling high blurry prediction, and implicit modeling of physical characteristics.
- Score: 16.14728977379756
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We address the video prediction task by putting forth a novel model that combines (i) our recently proposed hierarchical residual vector quantized variational autoencoder (HR-VQVAE), and (ii) a novel spatiotemporal PixelCNN (ST-PixelCNN). We refer to this approach as a sequential hierarchical residual learning vector quantized variational autoencoder (S-HR-VQVAE). By leveraging the intrinsic capabilities of HR-VQVAE at modeling still images with a parsimonious representation, combined with the ST-PixelCNN's ability at handling spatiotemporal information, S-HR-VQVAE can better deal with chief challenges in video prediction. These include learning spatiotemporal information, handling high dimensional data, combating blurry prediction, and implicit modeling of physical characteristics. Extensive experimental results on the KTH Human Action and Moving-MNIST tasks demonstrate that our model compares favorably against top video prediction techniques both in quantitative and qualitative evaluations despite a much smaller model size. Finally, we boost S-HR-VQVAE by proposing a novel training method to jointly estimate the HR-VQVAE and ST-PixelCNN parameters.
Related papers
- AI-Aided Kalman Filters [65.35350122917914]
The Kalman filter (KF) and its variants are among the most celebrated algorithms in signal processing.
Recent developments illustrate the possibility of fusing deep neural networks (DNNs) with classic Kalman-type filtering.
This article provides a tutorial-style overview of design approaches for incorporating AI in aiding KF-type algorithms.
arXiv Detail & Related papers (2024-10-16T06:47:53Z) - Variational autoencoder-based neural network model compression [4.992476489874941]
Variational Autoencoders (VAEs), as a form of deep generative model, have been widely used in recent years.
This paper aims to explore neural network model compression method based on VAE.
arXiv Detail & Related papers (2024-08-25T09:06:22Z) - SalFoM: Dynamic Saliency Prediction with Video Foundation Models [37.25208752620703]
Video saliency prediction (VSP) has shown promising performance compared to the human visual system.
We introduce SalFoM, a novel encoder-decoder video transformer architecture.
Our model employs UnMasked Teacher (UMT) extractor and presents a heterogeneous decoder-aware informationtemporal transformer.
arXiv Detail & Related papers (2024-04-03T22:38:54Z) - Cross-modal Prompts: Adapting Large Pre-trained Models for Audio-Visual
Downstream Tasks [55.36987468073152]
This paper proposes a novel Dual-Guided Spatial-Channel-Temporal (DG-SCT) attention mechanism.
The DG-SCT module incorporates trainable cross-modal interaction layers into pre-trained audio-visual encoders.
Our proposed model achieves state-of-the-art results across multiple downstream tasks, including AVE, AVVP, AVS, and AVQA.
arXiv Detail & Related papers (2023-11-09T05:24:20Z) - ESVAE: An Efficient Spiking Variational Autoencoder with Reparameterizable Poisson Spiking Sampling [20.36674120648714]
Variational autoencoders (VAEs) are one of the most popular image generation models.
Current VAE methods implicitly construct the latent space by an elaborated autoregressive network.
We propose an efficient spiking variational autoencoder (ESVAE) that constructs an interpretable latent space distribution.
arXiv Detail & Related papers (2023-10-23T12:01:10Z) - Contextually Enhanced ES-dRNN with Dynamic Attention for Short-Term Load
Forecasting [1.1602089225841632]
The proposed model is composed of two simultaneously trained tracks: the context track and the main track.
The RNN architecture consists of multiple recurrent layers stacked with hierarchical dilations and equipped with recently proposed attentive recurrent cells.
The model produces both point forecasts and predictive intervals.
arXiv Detail & Related papers (2022-12-18T07:42:48Z) - CONVIQT: Contrastive Video Quality Estimator [63.749184706461826]
Perceptual video quality assessment (VQA) is an integral component of many streaming and video sharing platforms.
Here we consider the problem of learning perceptually relevant video quality representations in a self-supervised manner.
Our results indicate that compelling representations with perceptual bearing can be obtained using self-supervised learning.
arXiv Detail & Related papers (2022-06-29T15:22:01Z) - Dynamically-Scaled Deep Canonical Correlation Analysis [77.34726150561087]
Canonical Correlation Analysis (CCA) is a method for feature extraction of two views by finding maximally correlated linear projections of them.
We introduce a novel dynamic scaling method for training an input-dependent canonical correlation model.
arXiv Detail & Related papers (2022-03-23T12:52:49Z) - Closed-form Continuous-Depth Models [99.40335716948101]
Continuous-depth neural models rely on advanced numerical differential equation solvers.
We present a new family of models, termed Closed-form Continuous-depth (CfC) networks, that are simple to describe and at least one order of magnitude faster.
arXiv Detail & Related papers (2021-06-25T22:08:51Z) - Convolutional Tensor-Train LSTM for Spatio-temporal Learning [116.24172387469994]
We propose a higher-order LSTM model that can efficiently learn long-term correlations in the video sequence.
This is accomplished through a novel tensor train module that performs prediction by combining convolutional features across time.
Our results achieve state-of-the-art performance-art in a wide range of applications and datasets.
arXiv Detail & Related papers (2020-02-21T05:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.