ESVAE: An Efficient Spiking Variational Autoencoder with Reparameterizable Poisson Spiking Sampling
- URL: http://arxiv.org/abs/2310.14839v2
- Date: Fri, 23 Aug 2024 02:09:22 GMT
- Title: ESVAE: An Efficient Spiking Variational Autoencoder with Reparameterizable Poisson Spiking Sampling
- Authors: Qiugang Zhan, Ran Tao, Xiurui Xie, Guisong Liu, Malu Zhang, Huajin Tang, Yang Yang,
- Abstract summary: Variational autoencoders (VAEs) are one of the most popular image generation models.
Current VAE methods implicitly construct the latent space by an elaborated autoregressive network.
We propose an efficient spiking variational autoencoder (ESVAE) that constructs an interpretable latent space distribution.
- Score: 20.36674120648714
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, studies on image generation models of spiking neural networks (SNNs) have gained the attention of many researchers. Variational autoencoders (VAEs), as one of the most popular image generation models, have attracted a lot of work exploring their SNN implementation. Due to the constrained binary representation in SNNs, existing SNN VAE methods implicitly construct the latent space by an elaborated autoregressive network and use the network outputs as the sampling variables. However, this unspecified implicit representation of the latent space will increase the difficulty of generating high-quality images and introduces additional network parameters. In this paper, we propose an efficient spiking variational autoencoder (ESVAE) that constructs an interpretable latent space distribution and design a reparameterizable spiking sampling method. Specifically, we construct the prior and posterior of the latent space as a Poisson distribution using the firing rate of the spiking neurons. Subsequently, we propose a reparameterizable Poisson spiking sampling method, which is free from the additional network. Comprehensive experiments have been conducted, and the experimental results show that the proposed ESVAE outperforms previous SNN VAE methods in reconstructed & generated images quality. In addition, experiments demonstrate that ESVAE's encoder is able to retain the original image information more efficiently, and the decoder is more robust. The source code is available at https://github.com/QgZhan/ESVAE.
Related papers
- Variational Bayes image restoration with compressive autoencoders [4.879530644978008]
Regularization of inverse problems is of paramount importance in computational imaging.
In this work, we first propose to use compressive autoencoders instead of state-of-the-art generative models.
As a second contribution, we introduce the Variational Bayes Latent Estimation (VBLE) algorithm.
arXiv Detail & Related papers (2023-11-29T15:49:31Z) - FFEINR: Flow Feature-Enhanced Implicit Neural Representation for
Spatio-temporal Super-Resolution [4.577685231084759]
This paper proposes a Feature-Enhanced Neural Implicit Representation (FFEINR) for super-resolution of flow field data.
It can take full advantage of the implicit neural representation in terms of model structure and sampling resolution.
The training process of FFEINR is facilitated by introducing feature enhancements for the input layer.
arXiv Detail & Related papers (2023-08-24T02:28:18Z) - Deep Multi-Threshold Spiking-UNet for Image Processing [51.88730892920031]
This paper introduces the novel concept of Spiking-UNet for image processing, which combines the power of Spiking Neural Networks (SNNs) with the U-Net architecture.
To achieve an efficient Spiking-UNet, we face two primary challenges: ensuring high-fidelity information propagation through the network via spikes and formulating an effective training strategy.
Experimental results show that, on image segmentation and denoising, our Spiking-UNet achieves comparable performance to its non-spiking counterpart.
arXiv Detail & Related papers (2023-07-20T16:00:19Z) - Complexity Matters: Rethinking the Latent Space for Generative Modeling [65.64763873078114]
In generative modeling, numerous successful approaches leverage a low-dimensional latent space, e.g., Stable Diffusion.
In this study, we aim to shed light on this under-explored topic by rethinking the latent space from the perspective of model complexity.
arXiv Detail & Related papers (2023-07-17T07:12:29Z) - Learning to Learn with Generative Models of Neural Network Checkpoints [71.06722933442956]
We construct a dataset of neural network checkpoints and train a generative model on the parameters.
We find that our approach successfully generates parameters for a wide range of loss prompts.
We apply our method to different neural network architectures and tasks in supervised and reinforcement learning.
arXiv Detail & Related papers (2022-09-26T17:59:58Z) - Exponentially Tilted Gaussian Prior for Variational Autoencoder [3.52359746858894]
Recent studies show that probabilistic generative models can perform poorly on this task.
We propose the exponentially tilted Gaussian prior distribution for the Variational Autoencoder (VAE)
We show that our model produces high quality image samples which are more crisp than that of a standard Gaussian VAE.
arXiv Detail & Related papers (2021-11-30T18:28:19Z) - Fully Spiking Variational Autoencoder [66.58310094608002]
Spiking neural networks (SNNs) can be run on neuromorphic devices with ultra-high speed and ultra-low energy consumption.
In this study, we build a variational autoencoder (VAE) with SNN to enable image generation.
arXiv Detail & Related papers (2021-09-26T06:10:14Z) - Sampling-free Variational Inference for Neural Networks with
Multiplicative Activation Noise [51.080620762639434]
We propose a more efficient parameterization of the posterior approximation for sampling-free variational inference.
Our approach yields competitive results for standard regression problems and scales well to large-scale image classification tasks.
arXiv Detail & Related papers (2021-03-15T16:16:18Z) - Deep Networks for Direction-of-Arrival Estimation in Low SNR [89.45026632977456]
We introduce a Convolutional Neural Network (CNN) that is trained from mutli-channel data of the true array manifold matrix.
We train a CNN in the low-SNR regime to predict DoAs across all SNRs.
Our robust solution can be applied in several fields, ranging from wireless array sensors to acoustic microphones or sonars.
arXiv Detail & Related papers (2020-11-17T12:52:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.