GRAN is superior to GraphRNN: node orderings, kernel- and graph
embeddings-based metrics for graph generators
- URL: http://arxiv.org/abs/2307.06709v1
- Date: Thu, 13 Jul 2023 12:07:39 GMT
- Title: GRAN is superior to GraphRNN: node orderings, kernel- and graph
embeddings-based metrics for graph generators
- Authors: Ousmane Touat and Julian Stier and Pierre-Edouard Portier and Michael
Granitzer
- Abstract summary: We study kernel-based metrics on distributions of graph invariants and manifold-based and kernel-based metrics in graph embedding space.
We compare GraphRNN and GRAN, two well-known generative models for graphs, and unveil the influence of node orderings.
- Score: 0.6816499294108261
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A wide variety of generative models for graphs have been proposed. They are
used in drug discovery, road networks, neural architecture search, and program
synthesis. Generating graphs has theoretical challenges, such as isomorphic
representations -- evaluating how well a generative model performs is
difficult. Which model to choose depending on the application domain?
We extensively study kernel-based metrics on distributions of graph
invariants and manifold-based and kernel-based metrics in graph embedding
space. Manifold-based metrics outperform kernel-based metrics in embedding
space. We use these metrics to compare GraphRNN and GRAN, two well-known
generative models for graphs, and unveil the influence of node orderings. It
shows the superiority of GRAN over GraphRNN - further, our proposed adaptation
of GraphRNN with a depth-first search ordering is effective for small-sized
graphs.
A guideline on good practices regarding dataset selection and node feature
initialization is provided. Our work is accompanied by open-source code and
reproducible experiments.
Related papers
- Spectral Greedy Coresets for Graph Neural Networks [61.24300262316091]
The ubiquity of large-scale graphs in node-classification tasks hinders the real-world applications of Graph Neural Networks (GNNs)
This paper studies graph coresets for GNNs and avoids the interdependence issue by selecting ego-graphs based on their spectral embeddings.
Our spectral greedy graph coreset (SGGC) scales to graphs with millions of nodes, obviates the need for model pre-training, and applies to low-homophily graphs.
arXiv Detail & Related papers (2024-05-27T17:52:12Z) - SPGNN: Recognizing Salient Subgraph Patterns via Enhanced Graph Convolution and Pooling [25.555741218526464]
Graph neural networks (GNNs) have revolutionized the field of machine learning on non-Euclidean data such as graphs and networks.
We propose a concatenation-based graph convolution mechanism that injectively updates node representations.
We also design a novel graph pooling module, called WL-SortPool, to learn important subgraph patterns in a deep-learning manner.
arXiv Detail & Related papers (2024-04-21T13:11:59Z) - Seq-HGNN: Learning Sequential Node Representation on Heterogeneous Graph [57.2953563124339]
We propose a novel heterogeneous graph neural network with sequential node representation, namely Seq-HGNN.
We conduct extensive experiments on four widely used datasets from Heterogeneous Graph Benchmark (HGB) and Open Graph Benchmark (OGB)
arXiv Detail & Related papers (2023-05-18T07:27:18Z) - Training Graph Neural Networks on Growing Stochastic Graphs [114.75710379125412]
Graph Neural Networks (GNNs) rely on graph convolutions to exploit meaningful patterns in networked data.
We propose to learn GNNs on very large graphs by leveraging the limit object of a sequence of growing graphs, the graphon.
arXiv Detail & Related papers (2022-10-27T16:00:45Z) - Evaluating Graph Generative Models with Contrastively Learned Features [9.603362400275868]
We show that Graph Substructure Networks (GSNs) are better at distinguishing the distances between graph datasets.
We propose using representations from contrastively trained GNNs, rather than random GNNs, and show this gives more reliable evaluation metrics.
arXiv Detail & Related papers (2022-06-13T15:14:41Z) - Adaptive Kernel Graph Neural Network [21.863238974404474]
Graph neural networks (GNNs) have demonstrated great success in representation learning for graph-structured data.
In this paper, we propose a novel framework - i.e., namely Adaptive Kernel Graph Neural Network (AKGNN)
AKGNN learns to adapt to the optimal graph kernel in a unified manner at the first attempt.
Experiments are conducted on acknowledged benchmark datasets and promising results demonstrate the outstanding performance of our proposed AKGNN.
arXiv Detail & Related papers (2021-12-08T20:23:58Z) - Node Feature Extraction by Self-Supervised Multi-scale Neighborhood
Prediction [123.20238648121445]
We propose a new self-supervised learning framework, Graph Information Aided Node feature exTraction (GIANT)
GIANT makes use of the eXtreme Multi-label Classification (XMC) formalism, which is crucial for fine-tuning the language model based on graph information.
We demonstrate the superior performance of GIANT over the standard GNN pipeline on Open Graph Benchmark datasets.
arXiv Detail & Related papers (2021-10-29T19:55:12Z) - Scalable Graph Neural Networks for Heterogeneous Graphs [12.44278942365518]
Graph neural networks (GNNs) are a popular class of parametric model for learning over graph-structured data.
Recent work has argued that GNNs primarily use the graph for feature smoothing, and have shown competitive results on benchmark tasks.
In this work, we ask whether these results can be extended to heterogeneous graphs, which encode multiple types of relationship between different entities.
arXiv Detail & Related papers (2020-11-19T06:03:35Z) - Distance Encoding: Design Provably More Powerful Neural Networks for
Graph Representation Learning [63.97983530843762]
Graph Neural Networks (GNNs) have achieved great success in graph representation learning.
GNNs generate identical representations for graph substructures that may in fact be very different.
More powerful GNNs, proposed recently by mimicking higher-order tests, are inefficient as they cannot sparsity of underlying graph structure.
We propose Distance Depiction (DE) as a new class of graph representation learning.
arXiv Detail & Related papers (2020-08-31T23:15:40Z) - XGNN: Towards Model-Level Explanations of Graph Neural Networks [113.51160387804484]
Graphs neural networks (GNNs) learn node features by aggregating and combining neighbor information.
GNNs are mostly treated as black-boxes and lack human intelligible explanations.
We propose a novel approach, known as XGNN, to interpret GNNs at the model-level.
arXiv Detail & Related papers (2020-06-03T23:52:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.