Evaluating Graph Generative Models with Contrastively Learned Features
- URL: http://arxiv.org/abs/2206.06234v1
- Date: Mon, 13 Jun 2022 15:14:41 GMT
- Title: Evaluating Graph Generative Models with Contrastively Learned Features
- Authors: Hamed Shirzad and Kaveh Hassani and Danica J. Sutherland
- Abstract summary: We show that Graph Substructure Networks (GSNs) are better at distinguishing the distances between graph datasets.
We propose using representations from contrastively trained GNNs, rather than random GNNs, and show this gives more reliable evaluation metrics.
- Score: 9.603362400275868
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A wide range of models have been proposed for Graph Generative Models,
necessitating effective methods to evaluate their quality. So far, most
techniques use either traditional metrics based on subgraph counting, or the
representations of randomly initialized Graph Neural Networks (GNNs). We
propose using representations from contrastively trained GNNs, rather than
random GNNs, and show this gives more reliable evaluation metrics. Neither
traditional approaches nor GNN-based approaches dominate the other, however: we
give examples of graphs that each approach is unable to distinguish. We
demonstrate that Graph Substructure Networks (GSNs), which in a way combine
both approaches, are better at distinguishing the distances between graph
datasets.
Related papers
- Ensemble Quadratic Assignment Network for Graph Matching [52.20001802006391]
Graph matching is a commonly used technique in computer vision and pattern recognition.
Recent data-driven approaches have improved the graph matching accuracy remarkably.
We propose a graph neural network (GNN) based approach to combine the advantages of data-driven and traditional methods.
arXiv Detail & Related papers (2024-03-11T06:34:05Z) - GRAPES: Learning to Sample Graphs for Scalable Graph Neural Networks [2.4175455407547015]
Graph neural networks learn to represent nodes by aggregating information from their neighbors.
Several existing methods address this by sampling a small subset of nodes, scaling GNNs to much larger graphs.
We introduce GRAPES, an adaptive sampling method that learns to identify the set of nodes crucial for training a GNN.
arXiv Detail & Related papers (2023-10-05T09:08:47Z) - GRAN is superior to GraphRNN: node orderings, kernel- and graph
embeddings-based metrics for graph generators [0.6816499294108261]
We study kernel-based metrics on distributions of graph invariants and manifold-based and kernel-based metrics in graph embedding space.
We compare GraphRNN and GRAN, two well-known generative models for graphs, and unveil the influence of node orderings.
arXiv Detail & Related papers (2023-07-13T12:07:39Z) - A Simple and Scalable Graph Neural Network for Large Directed Graphs [11.792826520370774]
We investigate various combinations of node representations and edge direction awareness within an input graph.
In response, we propose a simple yet holistic classification method A2DUG.
We demonstrate that A2DUG stably performs well on various datasets and improves the accuracy up to 11.29 compared with the state-of-the-art methods.
arXiv Detail & Related papers (2023-06-14T06:24:58Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
We propose a simple yet efficient framework to make the homogeneous GNNs have adequate ability to handle heterogeneous graphs.
Specifically, we propose Relation Embedding based Graph Neural Networks (RE-GNNs), which employ only one parameter per relation to embed the importance of edge type relations and self-loop connections.
arXiv Detail & Related papers (2022-09-23T05:24:18Z) - Similarity-aware Positive Instance Sampling for Graph Contrastive
Pre-training [82.68805025636165]
We propose to select positive graph instances directly from existing graphs in the training set.
Our selection is based on certain domain-specific pair-wise similarity measurements.
Besides, we develop an adaptive node-level pre-training method to dynamically mask nodes to distribute them evenly in the graph.
arXiv Detail & Related papers (2022-06-23T20:12:51Z) - A Robust and Generalized Framework for Adversarial Graph Embedding [73.37228022428663]
We propose a robust framework for adversarial graph embedding, named AGE.
AGE generates the fake neighbor nodes as the enhanced negative samples from the implicit distribution.
Based on this framework, we propose three models to handle three types of graph data.
arXiv Detail & Related papers (2021-05-22T07:05:48Z) - Scalable Graph Neural Networks for Heterogeneous Graphs [12.44278942365518]
Graph neural networks (GNNs) are a popular class of parametric model for learning over graph-structured data.
Recent work has argued that GNNs primarily use the graph for feature smoothing, and have shown competitive results on benchmark tasks.
In this work, we ask whether these results can be extended to heterogeneous graphs, which encode multiple types of relationship between different entities.
arXiv Detail & Related papers (2020-11-19T06:03:35Z) - Distance Encoding: Design Provably More Powerful Neural Networks for
Graph Representation Learning [63.97983530843762]
Graph Neural Networks (GNNs) have achieved great success in graph representation learning.
GNNs generate identical representations for graph substructures that may in fact be very different.
More powerful GNNs, proposed recently by mimicking higher-order tests, are inefficient as they cannot sparsity of underlying graph structure.
We propose Distance Depiction (DE) as a new class of graph representation learning.
arXiv Detail & Related papers (2020-08-31T23:15:40Z) - XGNN: Towards Model-Level Explanations of Graph Neural Networks [113.51160387804484]
Graphs neural networks (GNNs) learn node features by aggregating and combining neighbor information.
GNNs are mostly treated as black-boxes and lack human intelligible explanations.
We propose a novel approach, known as XGNN, to interpret GNNs at the model-level.
arXiv Detail & Related papers (2020-06-03T23:52:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.