論文の概要: PC-Droid: Faster diffusion and improved quality for particle cloud
generation
- arxiv url: http://arxiv.org/abs/2307.06836v3
- Date: Fri, 18 Aug 2023 16:33:39 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-21 23:05:45.197163
- Title: PC-Droid: Faster diffusion and improved quality for particle cloud
generation
- Title(参考訳): PC-Droid:高速拡散と粒子雲生成の品質向上
- Authors: Matthew Leigh, Debajyoti Sengupta, John Andrew Raine, Guillaume
Qu\'etant, Tobias Golling
- Abstract要約: PC-JeDiの成功に基づいて,ジェット粒子雲の生成のための拡散モデルであるPC-Droidを導入する。
新しい拡散定式化、より最近の積分解法の研究、および全てのジェット型を同時に訓練することにより、あらゆる種類のジェットに対して最先端の性能を達成することができる。
- 参考スコア(独自算出の注目度): 0.9374652839580183
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Building on the success of PC-JeDi we introduce PC-Droid, a substantially
improved diffusion model for the generation of jet particle clouds. By
leveraging a new diffusion formulation, studying more recent integration
solvers, and training on all jet types simultaneously, we are able to achieve
state-of-the-art performance for all types of jets across all evaluation
metrics. We study the trade-off between generation speed and quality by
comparing two attention based architectures, as well as the potential of
consistency distillation to reduce the number of diffusion steps. Both the
faster architecture and consistency models demonstrate performance surpassing
many competing models, with generation time up to two orders of magnitude
faster than PC-JeDi and three orders of magnitude faster than Delphes.
- Abstract(参考訳): PC-JeDiの成功に基づいて,ジェット粒子雲の生成のための拡散モデルであるPC-Droidを導入する。
新しい拡散定式化、より最近の積分解法の研究、および全てのジェット種を同時に訓練することにより、あらゆる評価指標のあらゆる種類のジェットに対して最先端の性能を達成することができる。
2つの注意に基づくアーキテクチャを比較して、生成速度と品質のトレードオフと、拡散ステップ数を減らすための一貫性蒸留の可能性について検討した。
高速なアーキテクチャモデルと一貫性モデルの両方が、多くの競合モデルを上回るパフォーマンスを示しており、生成時間はpc-jediより最大2桁、delphesより3桁速い。
関連論文リスト
- FlowTurbo: Towards Real-time Flow-Based Image Generation with Velocity Refiner [70.90505084288057]
フローベースモデルはサンプリングプロセス中により直線的なサンプリング軌道を生成する傾向にある。
擬似修正器やサンプル認識コンパイルなどいくつかの手法を導入し,推論時間をさらに短縮する。
FlowTurboはImageNet上で100(ms/img)で2.12FID、38(ms/img)で3.93FIDに達する
論文 参考訳(メタデータ) (2024-09-26T17:59:51Z) - Efficient and Scalable Point Cloud Generation with Sparse Point-Voxel Diffusion Models [6.795447206159906]
本稿では3次元生成モデルのための新しい点雲U-Net拡散アーキテクチャを提案する。
我々のネットワークは、高分解能な点表現とスパースボクセルの計算効率を組み合わせた二重分岐アーキテクチャを採用している。
我々のモデルは全てのタスクに優れており、ポイントクラウド生成モデルのための最先端の拡散U-Netとして確立されている。
論文 参考訳(メタデータ) (2024-08-12T13:41:47Z) - Self-Play Fine-Tuning of Diffusion Models for Text-to-Image Generation [59.184980778643464]
ファインチューニング拡散モデル : 生成人工知能(GenAI)の最前線
本稿では,拡散モデル(SPIN-Diffusion)のための自己演奏ファインチューニングという革新的な手法を紹介する。
提案手法は従来の教師付き微調整とRL戦略の代替として,モデル性能とアライメントの両方を大幅に改善する。
論文 参考訳(メタデータ) (2024-02-15T18:59:18Z) - Fast Training of Diffusion Transformer with Extreme Masking for 3D Point
Clouds Generation [64.99362684909914]
我々は,効率的な3次元点雲生成に適したマスク付き拡散変圧器であるFastDiT-3Dを提案する。
また,新しいボクセル対応マスキング手法を提案し,ボクセル化点雲から背景・地上情報を適応的に集約する。
本手法は, マスキング比が99%近い最先端性能を実現する。
論文 参考訳(メタデータ) (2023-12-12T12:50:33Z) - One-Step Diffusion Distillation via Deep Equilibrium Models [64.11782639697883]
本稿では,拡散モデルを初期雑音から得られた画像に直接蒸留する簡易かつ効果的な方法を提案する。
本手法は,拡散モデルからノイズ/イメージペアのみによる完全オフライントレーニングを可能にする。
GET は FID スコアの点で 5 倍の ViT と一致するので,DEC アーキテクチャがこの能力に不可欠であることを示す。
論文 参考訳(メタデータ) (2023-12-12T07:28:40Z) - Co-training and Co-distillation for Quality Improvement and Compression
of Language Models [88.94539115180919]
知識蒸留(KD)は、知識をより小さなモデルに伝達することで、高価な事前訓練言語モデル(PLM)を圧縮する。
ほとんどの小型モデルはオリジナルの大型モデルの性能を上回ることができず、推論速度を改善するために性能を犠牲にする結果となった。
本稿では,2つのモデルを協調学習することで,性能と推論速度を共に向上する新しいフレームワークであるCTCDを提案する。
論文 参考訳(メタデータ) (2023-11-06T03:29:00Z) - EPiC-ly Fast Particle Cloud Generation with Flow-Matching and Diffusion [0.7255608805275865]
本稿では,LHCジェットを点雲として効率的に高精度に生成する2つの新しい手法を提案する。
epcjediとepはどちらも、トップクォークのJetNetデータセット上で最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2023-09-29T18:00:03Z) - ProtoDiffusion: Classifier-Free Diffusion Guidance with Prototype
Learning [0.0]
本研究では,拡散モデルにプロトタイプ学習を組み込んで,拡散モデルよりも高速な生成品質を実現する。
ProtoDiffusionと呼ばれる本手法は,ベースライン法に比べて早期の訓練において優れた性能を発揮する。
論文 参考訳(メタデータ) (2023-07-04T21:18:39Z) - PC-JeDi: Diffusion for Particle Cloud Generation in High Energy Physics [0.8246494848934447]
我々は,PC-JeDiと呼ばれる高エネルギー物理学においてジェットを効率的に生成する新しい手法を提案する。
本手法は, 粒子雲としてジェットを生成する作業に適した変圧器とともに, スコアベース拡散モデルを用いる。
PC-JeDiは、発生したジェットの質を評価するいくつかの指標で、現在の最先端手法と競合する性能を達成している。
論文 参考訳(メタデータ) (2023-03-09T16:23:49Z) - Block Pruning For Faster Transformers [89.70392810063247]
小型モデルと高速モデルの両方を対象としたブロックプルーニング手法を提案する。
このアプローチは、アテンションヘッドのような基盤となるモデルの完全なコンポーネントを抽出することを学ぶ。
論文 参考訳(メタデータ) (2021-09-10T12:46:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。