Periodic quantum Rabi model with cold atoms at deep strong coupling
- URL: http://arxiv.org/abs/2307.06956v2
- Date: Wed, 10 Jul 2024 14:25:54 GMT
- Title: Periodic quantum Rabi model with cold atoms at deep strong coupling
- Authors: Geram R. Hunanyan, Johannes Koch, Stefanie Moll, Enrique Rico, Enrique Solano, Martin Weitz,
- Abstract summary: We experimentally demonstrate atomic dynamics predicted by the periodic quantum Rabi model far in the deep strong coupling regime.
The observed dynamics becomes relevant when the edge of the Brillouin zone is reached.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The quantum Rabi model describes the coupling of a two-state system to a bosonic field mode. Recent theoretical work has pointed out that a generalized periodic version of this model, which maps onto Hamiltonians applicable in superconducting qubit settings, can be quantum simulated with cold trapped atoms. Here, we experimentally demonstrate atomic dynamics predicted by the periodic quantum Rabi model far in the deep strong coupling regime. The two-state system is represented by two Bloch bands of cold atoms in an optical lattice, and the bosonic mode by oscillations in a superimposed optical dipole trap potential. The observed dynamics beyond the usual quantum Rabi physics becomes relevant when the edge of the Brillouin zone is reached, and evidence for collapse and revival of the initial state is revealed at extreme coupling conditions.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Floquet engineering the quantum Rabi model in the ultrastrong coupling regime [0.5852077003870417]
We study the quantum Rabi model for a two-level system coupled to a quantized cavity mode under periodic modulation of the cavity-dipole coupling in the ultrastrong coupling regime, leading to rich Floquet states.
As an application of the theory, we show how purely mechanical driving can produce real photons, depending on the strength and frequency of the periodic coupling rate.
arXiv Detail & Related papers (2024-07-23T05:26:56Z) - Spontaneous Emission in the presence of Quantum Mirrors [0.0]
Arrays of atoms coupled to waveguides can behave as mirrors.
We analyze the spontaneous emission of an excited two-level atom in the presence of such a quantum mirror.
arXiv Detail & Related papers (2024-02-15T20:09:22Z) - Higher-order topological Peierls insulator in a two-dimensional
atom-cavity system [58.720142291102135]
We show how photon-mediated interactions give rise to a plaquette-ordered bond pattern in the atomic ground state.
The pattern opens a non-trivial topological gap in 2D, resulting in a higher-order topological phase hosting corner states.
Our work shows how atomic quantum simulators can be harnessed to investigate novel strongly-correlated topological phenomena.
arXiv Detail & Related papers (2023-05-05T10:25:14Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Fractonic Luttinger Liquids and Supersolids in a Constrained
Bose-Hubbard Model [0.0]
We show the existence of a variety of exotic quantum phases in the ground states of a Bose-Hubbard model in one dimension.
For integer boson fillings, we perform a mapping of the system to a model of microscopic local dipoles, which are composites of fractons.
We apply a combination of low-energy field theory and large-scale tensor network simulations to demonstrate the emergence of a dipole Luttinger liquid phase.
arXiv Detail & Related papers (2022-10-20T07:51:20Z) - Quantum Rabi dynamics of trapped atoms far in the deep strong coupling
regime [0.0]
We show a periodic variant of the quantum Rabi model in which the two-level system is encoded in the Bloch band structure of cold rubidium atoms in optical potentials.
Our work demonstrates a route to realize quantum-engineering applications in yet unexplored parameter regimes.
arXiv Detail & Related papers (2021-12-23T12:27:24Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - Quantum chaos driven by long-range waveguide-mediated interactions [125.99533416395765]
We study theoretically quantum states of a pair of photons interacting with a finite periodic array of two-level atoms in a waveguide.
Our calculation reveals two-polariton eigenstates that have a highly irregular wave-function in real space.
arXiv Detail & Related papers (2020-11-24T07:06:36Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Driving Quantum Correlated Atom-Pairs from a Bose-Einstein Condensate [0.0]
We investigate one such control protocol that demonstrates the resonant amplification of quasimomentum pairs from a Bose-Einstein condensate.
A classical external field that excites pairs of particles with the same energy but opposite momenta is reminiscent of the coherently-driven nonlinearity in a parametric amplifier crystal.
arXiv Detail & Related papers (2020-01-08T00:11:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.