Quantum Rabi dynamics of trapped atoms far in the deep strong coupling
regime
- URL: http://arxiv.org/abs/2112.12488v2
- Date: Wed, 22 Feb 2023 21:38:43 GMT
- Title: Quantum Rabi dynamics of trapped atoms far in the deep strong coupling
regime
- Authors: Johannes Koch, Geram R. Hunanyan, Till Ockenfels, Enrique Rico,
Enrique Solano, Martin Weitz
- Abstract summary: We show a periodic variant of the quantum Rabi model in which the two-level system is encoded in the Bloch band structure of cold rubidium atoms in optical potentials.
Our work demonstrates a route to realize quantum-engineering applications in yet unexplored parameter regimes.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The coupling of a two-level system with an electromagnetic field, whose fully
quantized version is the quantum Rabi model, is among the central topics of
quantum physics. When the coupling strength becomes large enough that the field
mode frequency is reached, the deep strong coupling regime is approached, and
excitations can be created from the vacuum. Here we demonstrate a periodic
variant of the quantum Rabi model in which the two-level system is encoded in
the Bloch band structure of cold rubidium atoms in optical potentials. With
this method we achieve a Rabi coupling strength of 6.5 times the field mode
frequency, which is far in the deep strong coupling regime, and observe a
subcycle timescale raise in bosonic field mode excitations. In a measurement
recorded in the basis of the coupling term of the quantum Rabi Hamiltonian, a
freezing of dynamics is revealed for small frequency splittings of the
two-level system, as expected when the coupling term dominates over all other
energy scales, and a revival for larger splittings. Our work demonstrates a
route to realize quantum-engineering applications in yet unexplored parameter
regimes.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Controlling superradiant phase transition in quantum Rabi model [6.544489788514925]
In the ultrastrong-coupling regime, the quantum Rabi model can exhibit quantum phase transition (QPT) when the ratio of the qubit transition frequency to the frequency of the cavity field approaches infinity.
Here, we propose a practical scheme to manipulate the QPT of quantum Rabi model in the strong-coupling regime.
We find that the QPT of quantum Rabi model can be observed in the strong-coupling regime and externally controlled by the modulation.
arXiv Detail & Related papers (2024-07-30T09:32:12Z) - Floquet engineering the quantum Rabi model in the ultrastrong coupling regime [0.5852077003870417]
We study the quantum Rabi model for a two-level system coupled to a quantized cavity mode under periodic modulation of the cavity-dipole coupling in the ultrastrong coupling regime, leading to rich Floquet states.
As an application of the theory, we show how purely mechanical driving can produce real photons, depending on the strength and frequency of the periodic coupling rate.
arXiv Detail & Related papers (2024-07-23T05:26:56Z) - Quantum error mitigation for Fourier moment computation [49.1574468325115]
This paper focuses on the computation of Fourier moments within the context of a nuclear effective field theory on superconducting quantum hardware.
The study integrates echo verification and noise renormalization into Hadamard tests using control reversal gates.
The analysis, conducted using noise models, reveals a significant reduction in noise strength by two orders of magnitude.
arXiv Detail & Related papers (2024-01-23T19:10:24Z) - Periodic quantum Rabi model with cold atoms at deep strong coupling [0.0]
We experimentally demonstrate atomic dynamics predicted by the periodic quantum Rabi model far in the deep strong coupling regime.
The observed dynamics becomes relevant when the edge of the Brillouin zone is reached.
arXiv Detail & Related papers (2023-07-12T22:49:07Z) - Quantum phase transition of the Jaynes-Cummings model [5.430084892262298]
We show an experimentally feasible scheme to show the quantum phase transition of the Jaynes-Cummings (JC) model.
The ratio of the coupling strength to resonance frequencies in the deep-strong JC model is two orders of magnitude larger than the corresponding ratio in the original quantum Rabi model.
arXiv Detail & Related papers (2023-06-23T14:35:22Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Quantum topology in the ultrastrong coupling regime [0.0]
We show how the delicate interplay between ultrastrong coupling and topological states manifests in a one-dimensional array.
We uncover unusual topological edge states, we introduce a flavour of topological state which we call an anti-edge state, and we reveal the remarkable geometric-dependent renormalizations of the quantum vaccum.
arXiv Detail & Related papers (2022-07-11T15:35:45Z) - Out-of-time-order correlator in the quantum Rabi model [62.997667081978825]
We show that out-of-time-order correlator derived from the Loschmidt echo signal quickly saturates in the normal phase.
We show that the effective time-averaged dimension of the quantum Rabi system can be large compared to the spin system size.
arXiv Detail & Related papers (2022-01-17T10:56:57Z) - From geometry to coherent dissipative dynamics in quantum mechanics [68.8204255655161]
We work out the case of finite-level systems, for which it is shown by means of the corresponding contact master equation.
We describe quantum decays in a 2-level system as coherent and continuous processes.
arXiv Detail & Related papers (2021-07-29T18:27:38Z) - Quantum chaos driven by long-range waveguide-mediated interactions [125.99533416395765]
We study theoretically quantum states of a pair of photons interacting with a finite periodic array of two-level atoms in a waveguide.
Our calculation reveals two-polariton eigenstates that have a highly irregular wave-function in real space.
arXiv Detail & Related papers (2020-11-24T07:06:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.