Decoherence of a matter-wave interferometer due to dipole-dipole
interactions
- URL: http://arxiv.org/abs/2307.07001v1
- Date: Thu, 13 Jul 2023 18:02:48 GMT
- Title: Decoherence of a matter-wave interferometer due to dipole-dipole
interactions
- Authors: Paolo Fragolino, Martine Schut, Marko Toro\v{s}, Sougato Bose and
Anupam Mazumdar
- Abstract summary: We will study the decoherence of the matter-wave interferometer due to dipole-dipole interactions.
We will conclude by applying the obtained formulae to estimate the dipole-dipole decoherence rate for the Quantum Gravity-induced Entanglement of Masses protocol.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Matter-wave interferometry with nanoparticles will enable the development of
quantum sensors capable of probing ultraweak fields with unprecedented
applications for fundamental physics. The high sensitivity of such devices
however makes them susceptible to a number of noise and decoherence sources and
as such can only operate when sufficient isolation from the environment is
achieved. It is thus imperative to model and characterize the interaction of
nanoparticles with the environment and to estimate its deleterious effects. The
aim of this paper will be to study the decoherence of the matter-wave
interferometer due to dipole-dipole interactions which is one of the
unavoidable channels for decoherence even for a neutral micro-crystal. We will
start the analysis from QED and show that it reduces to the scattering model
characterized by the differential cross-section. We will then obtain simple
expressions for the decoherence rate in the short and long wavelength limits
that can be readily applied to estimate the available coherence time. We will
conclude by applying the obtained formulae to estimate the dipole-dipole
decoherence rate for the Quantum Gravity-induced Entanglement of Masses (QGEM)
protocol and discuss if the effects should be mitigated.
Related papers
- Spin Squeezing with Magnetic Dipoles [37.93140485169168]
Entanglement can improve the measurement precision of quantum sensors beyond the shot noise limit.
We take advantage of the magnetic dipole-dipole interaction native to most neutral atoms to realize spin-squeezed states.
We achieve 7.1 dB of metrologically useful squeezing using the finite-range spin exchange interactions in an erbium quantum gas microscope.
arXiv Detail & Related papers (2024-11-11T18:42:13Z) - Essential role of destructive interference in the gravitationally
induced entanglement [0.0]
The present paper analyzes the gravitationally induced entanglement as a pure interference effect.
The non-maximally entangled state can be extremely effective for experimental testing.
arXiv Detail & Related papers (2024-01-09T12:24:32Z) - Dephasing due to electromagnetic interactions in spatial qubits [0.0]
Noise analysis in frequency-space focusing on electromagnetic sources of dephasing.
We will apply the obtained formulae to situations with two adjacent micro-particles.
arXiv Detail & Related papers (2023-12-09T03:47:35Z) - Relaxation of experimental parameters in a Quantum-Gravity Induced
Entanglement of Masses Protocol using electromagnetic screening [0.0]
The quantum gravity-induced entanglement of masses (QGEM) experiment is used to test the quantum nature of gravity in a lab.
We will consider a parallel configuration of the QGEM experiment, where we will estimate the EM-induced dephasing rate, run-by-run systematic errors which will induce dephasing, and also provide constraints on the size of the superposition.
arXiv Detail & Related papers (2023-07-14T12:08:57Z) - Sensing of magnetic field effects in radical-pair reactions using a
quantum sensor [50.591267188664666]
Magnetic field effects (MFE) in certain chemical reactions have been well established in the last five decades.
We employ elaborate and realistic models of radical-pairs, considering its coupling to the local spin environment and the sensor.
For two model systems, we derive signals of MFE detectable even in the weak coupling regime between radical-pair and NV quantum sensor.
arXiv Detail & Related papers (2022-09-28T12:56:15Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Robust Macroscopic Matter-Wave Interferometry with Solids [1.90365714903665]
We exploit the spatial correlations that are inherent in perturbations due to distant sources to reduce their impact on the visibility of interference patterns.
We develop a general framework that makes use of N+1 interferometers that may differ in their masses to correct for potential environmental fields up to order N.
We also show that the same ideas can be extended to the protection of entanglement between pairs of interferometers.
arXiv Detail & Related papers (2021-07-30T17:52:48Z) - Photon-mediated interactions near a Dirac photonic crystal slab [68.8204255655161]
We develop a theory of dipole radiation near photonic Dirac points in realistic structures.
We find positions where the nature of the collective interactions change from being coherent to dissipative ones.
Our results significantly improve the knowledge of Dirac light-matter interfaces.
arXiv Detail & Related papers (2021-07-01T14:21:49Z) - Demonstration of electron-nuclear decoupling at a spin clock transition [54.088309058031705]
Clock transitions protect molecular spin qubits from magnetic noise.
linear coupling to nuclear degrees of freedom causes a modulation and decay of electronic coherence.
An absence of quantum information leakage to the nuclear bath provides opportunities to characterize other decoherence sources.
arXiv Detail & Related papers (2021-06-09T16:23:47Z) - Chemical tuning of spin clock transitions in molecular monomers based on
nuclear spin-free Ni(II) [52.259804540075514]
We report the existence of a sizeable quantum tunnelling splitting between the two lowest electronic spin levels of mononuclear Ni complexes.
The level anti-crossing, or magnetic clock transition, associated with this gap has been directly monitored by heat capacity experiments.
The comparison of these results with those obtained for a Co derivative, for which tunnelling is forbidden by symmetry, shows that the clock transition leads to an effective suppression of intermolecular spin-spin interactions.
arXiv Detail & Related papers (2021-03-04T13:31:40Z) - Probing the coherence of solid-state qubits at avoided crossings [51.805457601192614]
We study the quantum dynamics of paramagnetic defects interacting with a nuclear spin bath at avoided crossings.
The proposed theoretical approach paves the way to designing the coherence properties of spin qubits from first principles.
arXiv Detail & Related papers (2020-10-21T15:37:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.