Relaxation of experimental parameters in a Quantum-Gravity Induced
Entanglement of Masses Protocol using electromagnetic screening
- URL: http://arxiv.org/abs/2307.07536v2
- Date: Tue, 21 Nov 2023 11:37:15 GMT
- Title: Relaxation of experimental parameters in a Quantum-Gravity Induced
Entanglement of Masses Protocol using electromagnetic screening
- Authors: Martine Schut, Alexey Grinin, Andrew Dana, Sougato Bose, Andrew Geraci
and Anupam Mazumdar
- Abstract summary: The quantum gravity-induced entanglement of masses (QGEM) experiment is used to test the quantum nature of gravity in a lab.
We will consider a parallel configuration of the QGEM experiment, where we will estimate the EM-induced dephasing rate, run-by-run systematic errors which will induce dephasing, and also provide constraints on the size of the superposition.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: To test the quantum nature of gravity in a lab requires witnessing the
entanglement between the two test masses (nano-crystals) solely due to the
gravitational interaction kept at a distance in a spatial superposition. The
protocol is known as the quantum gravity-induced entanglement of masses (QGEM).
One of the main backgrounds in the QGEM experiment is electromagnetic (EM)
induced entanglement and decoherence. The EM interactions can entangle the two
neutral masses via dipole-dipole vacuum-induced interactions, such as the
Casimir-Polder interaction. To mitigate the EM-induced interactions between the
two nano-crystals, we enclose the two interferometers in a Faraday cage and
separate them by a conducting plate. However, any imperfection on the surface
of a nano-crystal, such as a permanent dipole moment will also create an EM
background interacting with the conducting plate in the experimental box. These
interactions will further generate EM-induced dephasing which we wish to
mitigate. In this paper, we will consider a parallel configuration of the QGEM
experiment, where we will estimate the EM-induced dephasing rate, run-by-run
systematic errors which will induce dephasing, and also provide constraints on
the size of the superposition in a model-independent way of creating the
spatial superposition.
Related papers
- Dephasing due to electromagnetic interactions in spatial qubits [0.0]
Noise analysis in frequency-space focusing on electromagnetic sources of dephasing.
We will apply the obtained formulae to situations with two adjacent micro-particles.
arXiv Detail & Related papers (2023-12-09T03:47:35Z) - Doppler-Enhanced Quantum Magnetometry with thermal Rydberg atoms [2.3488056916440856]
We show that one can harness Doppler shifts in a copropagating arrangement to produce an enhanced response to a magnetic field.
Our results pave the way to using quantum effects for magnetometry in readily deployable room-temperature platforms.
arXiv Detail & Related papers (2023-08-09T18:58:20Z) - Micron-size spatial superpositions for the QGEM-protocol via screening
and trapping [0.0]
Quantum gravity-induced entanglement of masses (QGEM) protocol for testing quantum gravity using entanglement witnessing.
We propose to trap the two interferometers so that the trapping potential dominates over the attraction between the conducting plate and the matter-wave interferometers.
The combination of trapping and shielding provides a better parameter space for the parallel configuration of the experiment.
arXiv Detail & Related papers (2023-07-28T18:00:18Z) - Local Fluctuations in Cavity Control of Ferroelectricity [0.0]
We study a quantum paraelectric sandwiched between two high-quality metal mirrors.
We find that once a continuum of transverse modes are included the cavity ends up suppressing ferroelectric correlations.
Our results are based on a general formalism and are expected to be widely applicable.
arXiv Detail & Related papers (2023-01-05T02:55:52Z) - Light propagation and atom interferometry in gravity and dilaton fields [58.80169804428422]
We study the modified propagation of light used to manipulate atoms in light-pulse atom interferometers.
Their interference signal is dominated by the matter's coupling to gravity and the dilaton.
We discuss effects from light propagation and the dilaton on different atom-interferometric setups.
arXiv Detail & Related papers (2022-01-18T15:26:19Z) - Dispersive readout of molecular spin qudits [68.8204255655161]
We study the physics of a magnetic molecule described by a "giant" spin with multiple $d > 2$ spin states.
We derive an expression for the output modes in the dispersive regime of operation.
We find that the measurement of the cavity transmission allows to uniquely determine the spin state of the qudits.
arXiv Detail & Related papers (2021-09-29T18:00:09Z) - Molecular Interactions Induced by a Static Electric Field in Quantum
Mechanics and Quantum Electrodynamics [68.98428372162448]
We study the interaction between two neutral atoms or molecules subject to a uniform static electric field.
Our focus is to understand the interplay between leading contributions to field-induced electrostatics/polarization and dispersion interactions.
arXiv Detail & Related papers (2021-03-30T14:45:30Z) - Chemical tuning of spin clock transitions in molecular monomers based on
nuclear spin-free Ni(II) [52.259804540075514]
We report the existence of a sizeable quantum tunnelling splitting between the two lowest electronic spin levels of mononuclear Ni complexes.
The level anti-crossing, or magnetic clock transition, associated with this gap has been directly monitored by heat capacity experiments.
The comparison of these results with those obtained for a Co derivative, for which tunnelling is forbidden by symmetry, shows that the clock transition leads to an effective suppression of intermolecular spin-spin interactions.
arXiv Detail & Related papers (2021-03-04T13:31:40Z) - Photon Condensation and Enhanced Magnetism in Cavity QED [68.8204255655161]
A system of magnetic molecules coupled to microwave cavities undergoes the equilibrium superradiant phase transition.
The effect of the coupling is first illustrated by the vacuum-induced ferromagnetic order in a quantum Ising model.
A transmission experiment is shown to resolve the transition, measuring the quantum electrodynamical control of magnetism.
arXiv Detail & Related papers (2020-11-07T11:18:24Z) - Quantum coherent spin-electric control in a molecular nanomagnet at
clock transitions [57.50861918173065]
Electrical control of spins at the nanoscale offers architectural advantages in spintronics.
Recent demonstrations of electric-field (E-field) sensitivities in molecular spin materials are tantalising.
E-field sensitivities reported so far are rather weak, prompting the question of how to design molecules with stronger spin-electric couplings.
arXiv Detail & Related papers (2020-05-03T09:27:31Z) - Quantum Many-Body Physics with Ultracold Polar Molecules: Nanostructured
Potential Barriers and Interactions [2.409938612878261]
We design dipolar quantum many-body Hamiltonians that will facilitate the realization of exotic quantum phases.
The main idea is to modulate both single-body potential barriers and two-body dipolar interactions on a spatial scale of tens of nanometers.
arXiv Detail & Related papers (2020-01-31T12:30:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.