Antiunitary symmetry breaking and a hierarchy of purification
transitions in Floquet non-unitary circuits
- URL: http://arxiv.org/abs/2307.07003v1
- Date: Thu, 13 Jul 2023 18:06:43 GMT
- Title: Antiunitary symmetry breaking and a hierarchy of purification
transitions in Floquet non-unitary circuits
- Authors: Carolyn Zhang, Etienne Granet
- Abstract summary: We show that a symmetry breaking transition coincides with different kinds of purification transitions.
In the weakly purifying phase, the initial mixed state purifies on a time scale proportional to the system size.
Our models have an extra $U(1)$ symmetry that divides the Hilbert space into different magnetization sectors.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider how a maximally mixed state evolves under $(1+1)D$ Floquet
non-unitary circuits with an antiunitary symmetry that squares to identity,
that serves as a generalized $\mathcal{PT}$ symmetry. Upon tuning a parameter,
the effective Hamiltonian of the Floquet operator demonstrates a symmetry
breaking transition. We show that this symmetry breaking transition coincides
with different kinds of purification transitions. Gaussian non-unitary circuits
are mixed (not purifying) on both sides of the symmetry breaking transition,
while interacting but integrable non-unitary circuits are mixed on the
symmetric side and ``weakly purifying" on the symmetry breaking side. In the
weakly purifying phase, the initial mixed state purifies on a time scale
proportional to the system size. We obtain numerically the critical exponents
associated with the divergence of the purification time at the purification
transition, which depend continuously on the parameters of the model. Upon
adding a symmetric perturbation that breaks integrability, the weakly purifying
phase becomes strongly purifying, purifying in a time independent of the system
size, for sufficiently large system size. Our models have an extra $U(1)$
symmetry that divides the Hilbert space into different magnetization sectors,
some of which demonstrate logarithmic scaling of entanglement in the weakly
purifying phase.
Related papers
- Controlling Symmetries and Quantum Criticality in the Anisotropic Coupled-Top Model [32.553027955412986]
We investigate the anisotropic coupled-top model, which describes the interactions between two large spins along both $x-$ and $y-$directions.
We can manipulate the system's symmetry, inducing either discrete $Z$ or continuous U(1) symmetry.
The framework provides an ideal platform for experimentally controlling symmetries and investigating associated physical phenomena.
arXiv Detail & Related papers (2025-02-13T15:14:29Z) - Strong-to-weak Symmetry Breaking and Entanglement Transitions [6.095133268764501]
We study the entanglement transition from the perspective of strong-to-weak symmetry breaking.
Our results provide a novel viewpoint on the entanglement transition under symmetry constraints.
arXiv Detail & Related papers (2024-11-08T06:42:28Z) - Diagnosing Strong-to-Weak Symmetry Breaking via Wightman Correlators [20.572965801171225]
Recent developments have extended the discussion of symmetry and its breaking to mixed states.
We propose the Wightman correlator as an alternative diagnostic tool.
arXiv Detail & Related papers (2024-10-12T02:04:40Z) - Spontaneous symmetry breaking in open quantum systems: strong, weak, and strong-to-weak [4.41737598556146]
We show that strong symmetry always spontaneously breaks into the corresponding weak symmetry.
We conjecture that this relation among strong-to-weak symmetry breaking, gapless modes, and symmetry-charge diffusion is general for continuous symmetries.
arXiv Detail & Related papers (2024-06-27T17:55:36Z) - Three perspectives on entropy dynamics in a non-Hermitian two-state system [41.94295877935867]
entropy dynamics as an indicator of physical behavior in an open two-state system with balanced gain and loss is presented.
We distinguish the perspective taken in utilizing the conventional framework of Hermitian-adjoint states from an approach that is based on biorthogonal-adjoint states and a third case based on an isospectral mapping.
arXiv Detail & Related papers (2024-04-04T14:45:28Z) - Entanglement phase transition due to reciprocity breaking without
measurement or post-selection [59.63862802533879]
EPT occurs for a system undergoing purely unitary evolution.
We analytically derive the entanglement entropy out of and at the critical point for the $l=1$ and $l/N ll 1$ case.
arXiv Detail & Related papers (2023-08-28T14:28:59Z) - Emergence of non-Abelian SU(2) invariance in Abelian frustrated
fermionic ladders [37.69303106863453]
We consider a system of interacting spinless fermions on a two-leg triangular ladder with $pi/2$ magnetic flux per triangular plaquette.
Microscopically, the system exhibits a U(1) symmetry corresponding to the conservation of total fermionic charge, and a discrete $mathbbZ$ symmetry.
At the intersection of the three phases, the system features a critical point with an emergent SU(2) symmetry.
arXiv Detail & Related papers (2023-05-11T15:57:27Z) - Anti-parity-time symmetry hidden in a damping linear resonator [0.5461938536945723]
Phase transition from the over-damping to under-damping states is a ubiquitous phenomenon in physical systems.
Here, we discover that this phase transition is determined by an anti-parity-time symmetry hidden in a single damping linear resonator.
We show that the breaking of the anti-$mathcalPT$ symmetry yields the phase transition from the over-damping to under-damping states.
arXiv Detail & Related papers (2022-08-17T09:46:31Z) - SYK meets non-Hermiticity II: measurement-induced phase transition [16.533265279392772]
We analytically derive the effective action in the large-$N$ limit and show that an entanglement transition is caused by the symmetry breaking in the enlarged replica space.
We also verify the large-$N$ critical exponents by numerically solving the Schwinger-Dyson equation.
arXiv Detail & Related papers (2021-04-16T17:55:08Z) - Breaking strong symmetries in dissipative quantum systems: Bosonic atoms
coupled to a cavity [0.0]
In dissipative quantum systems, strong symmetries can lead to the existence of conservation laws and multiple steady states.
We show that for ideal bosons coupled to the cavity multiple steady states exist and in each symmetry sector a dissipative phase transition occurs at a different critical point.
We point out the phenomenon of dissipative freezing, the breaking of the conservation law at the level of individual realizations in the presence of the strong symmetry.
arXiv Detail & Related papers (2021-02-04T10:54:31Z) - Symmetry breaking and error correction in open quantum systems [0.9786690381850356]
We show how to recover the logical information after any gap-preserving strong-symmetric error.
Our study forges a connection between driven-dissipative phase transitions and error correction.
arXiv Detail & Related papers (2020-08-06T18:00:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.