Strong-to-weak spontaneous symmetry breaking meets average symmetry-protected topological order
- URL: http://arxiv.org/abs/2410.13734v1
- Date: Thu, 17 Oct 2024 16:36:53 GMT
- Title: Strong-to-weak spontaneous symmetry breaking meets average symmetry-protected topological order
- Authors: Yuchen Guo, Shuo Yang,
- Abstract summary: We propose a new class of phases, termed the double ASPT phase, which emerges from a nontrivial extension of these two orders.
This new phase is absent from prior studies and cannot exist in conventional closed systems.
- Score: 17.38734393793605
- License:
- Abstract: Recent studies have unveiled new possibilities for discovering intrinsic quantum phases that are unique to open systems, including phases with average symmetry-protected topological (ASPT) order and strong-to-weak spontaneous symmetry breaking (SWSSB) order in systems with global symmetry. In this work, we propose a new class of phases, termed the double ASPT phase, which emerges from a nontrivial extension of these two orders. This new phase is absent from prior studies and cannot exist in conventional closed systems. Using the recently developed imaginary-Lindbladian formalism, we explore the phase diagram of a one-dimensional open system with $\mathbb{Z}_2^{\sigma}\times \mathbb{Z}_2^{\tau}$ symmetry. We identify universal critical behaviors along each critical line and observe the emergence of an intermediate phase that completely breaks the $\mathbb{Z}_2^{\sigma}$ symmetry, leading to the formation of two triple points in the phase diagram. These two triple points are topologically distinct and connected by a domain-wall decoration duality map. Our results promote the establishment of a complete classification for quantum phases in open systems with various symmetry conditions.
Related papers
- Long-range entanglement from spontaneous non-onsite symmetry breaking [3.3754780158324564]
We show a frustration-free lattice model exhibiting SSB of a non-onsite symmetry.
We analytically prove the two-fold ground-state degeneracy and the existence of a finite energy gap.
Our work reveals the exotic features of SSB of non-onsite symmetries, which may lie beyond the framework of topological holography.
arXiv Detail & Related papers (2024-11-07T18:59:51Z) - Intrinsic mixed state topological order in a stabilizer system under stochastic decoherence [0.0]
We study how toric code state changes to an intrinsic mixed state topologically-ordered (IMTO) state.
The present study clarifies the existence of two kinds of fermionic anyons, and also the obtained critical exponents indicate strong relation between IMTO and percolation.
arXiv Detail & Related papers (2024-10-18T08:13:24Z) - Three perspectives on entropy dynamics in a non-Hermitian two-state system [41.94295877935867]
entropy dynamics as an indicator of physical behavior in an open two-state system with balanced gain and loss is presented.
We distinguish the perspective taken in utilizing the conventional framework of Hermitian-adjoint states from an approach that is based on biorthogonal-adjoint states and a third case based on an isospectral mapping.
arXiv Detail & Related papers (2024-04-04T14:45:28Z) - Gapless symmetry-protected topological phases and generalized deconfined critical points from gauging a finite subgroup [0.6675805308519986]
Gauging a finite subgroup of a global symmetry can map conventional phases and phase transitions to unconventional ones.
In this work, we study an emergent $mathbbZ$-gauged system with global $U(1)$.
We also discuss the stability of these phases and the critical points to small perturbations and their potential experimental realizations.
arXiv Detail & Related papers (2024-01-22T05:46:49Z) - Topological Phases with Average Symmetries: the Decohered, the Disordered, and the Intrinsic [11.002608494115886]
Topological phases in mixed quantum states, originating from textitdecoherence in open quantum systems, have recently garnered significant interest.
We present a systematic classification and characterization of average symmetry-protected topological phases.
We also formulate the theory of average symmetry-enriched topological (ASET) orders in disordered bosonic systems.
arXiv Detail & Related papers (2023-05-25T18:04:22Z) - Emergence of non-Abelian SU(2) invariance in Abelian frustrated
fermionic ladders [37.69303106863453]
We consider a system of interacting spinless fermions on a two-leg triangular ladder with $pi/2$ magnetic flux per triangular plaquette.
Microscopically, the system exhibits a U(1) symmetry corresponding to the conservation of total fermionic charge, and a discrete $mathbbZ$ symmetry.
At the intersection of the three phases, the system features a critical point with an emergent SU(2) symmetry.
arXiv Detail & Related papers (2023-05-11T15:57:27Z) - Geometric phases along quantum trajectories [58.720142291102135]
We study the distribution function of geometric phases in monitored quantum systems.
For the single trajectory exhibiting no quantum jumps, a topological transition in the phase acquired after a cycle.
For the same parameters, the density matrix does not show any interference.
arXiv Detail & Related papers (2023-01-10T22:05:18Z) - Emergent XY* transition driven by symmetry fractionalization and anyon
condensation [0.0]
We study the phase diagram and anyon condensation transitions of a $mathbbZ$ topological order perturbed by Ising interactions in the Toric Code.
The interplay between the global Ising symmetry and the lattice space group symmetries results in a non-trivial symmetry fractionalization class for the anyons.
We provide numerical evidence for the occurrence of two symmetry breaking patterns predicted by the specific symmetry fractionalization class of the anyons in the explored phase diagram.
arXiv Detail & Related papers (2022-04-07T18:00:00Z) - Non-Gaussian superradiant transition via three-body ultrastrong coupling [62.997667081978825]
We introduce a class of quantum optical Hamiltonian characterized by three-body couplings.
We propose a circuit-QED scheme based on state-of-the-art technology that implements the considered model.
arXiv Detail & Related papers (2022-04-07T15:39:21Z) - Phase diagram of Rydberg-dressed atoms on two-leg square ladders:
Coupling supersymmetric conformal field theories on the lattice [52.77024349608834]
We investigate the phase diagram of hard-core bosons in two-leg ladders in the presence of soft-shoulder potentials.
We show how the competition between local and non-local terms gives rise to a phase diagram with liquid phases with dominant cluster, spin, and density-wave quasi-long-range ordering.
arXiv Detail & Related papers (2021-12-20T09:46:08Z) - Topological transitions with continuously monitored free fermions [68.8204255655161]
We show the presence of a topological phase transition that is of a different universality class than that observed in stroboscopic projective circuits.
We find that this entanglement transition is well identified by a combination of the bipartite entanglement entropy and the topological entanglement entropy.
arXiv Detail & Related papers (2021-12-17T22:01:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.