論文の概要: Bridging the Gap: Heterogeneous Face Recognition with Conditional
Adaptive Instance Modulation
- arxiv url: http://arxiv.org/abs/2307.07032v1
- Date: Thu, 13 Jul 2023 19:17:04 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-17 15:40:17.871915
- Title: Bridging the Gap: Heterogeneous Face Recognition with Conditional
Adaptive Instance Modulation
- Title(参考訳): ギャップのブリッジ:条件適応型インスタンス変調による異種顔認識
- Authors: Anjith George and Sebastien Marcel
- Abstract要約: 本研究では,事前学習した顔認識ネットワークに統合可能な,新しい条件適応型インスタンス変調(CAIM)モジュールを提案する。
CAIMブロックは中間特徴写像を変調し、対象モダリティのスタイルに適応して領域ギャップを効果的にブリッジする。
提案手法は,最小限のペアサンプルでエンドツーエンドのトレーニングを可能にする。
- 参考スコア(独自算出の注目度): 7.665392786787577
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Heterogeneous Face Recognition (HFR) aims to match face images across
different domains, such as thermal and visible spectra, expanding the
applicability of Face Recognition (FR) systems to challenging scenarios.
However, the domain gap and limited availability of large-scale datasets in the
target domain make training robust and invariant HFR models from scratch
difficult. In this work, we treat different modalities as distinct styles and
propose a framework to adapt feature maps, bridging the domain gap. We
introduce a novel Conditional Adaptive Instance Modulation (CAIM) module that
can be integrated into pre-trained FR networks, transforming them into HFR
networks. The CAIM block modulates intermediate feature maps, to adapt the
style of the target modality effectively bridging the domain gap. Our proposed
method allows for end-to-end training with a minimal number of paired samples.
We extensively evaluate our approach on multiple challenging benchmarks,
demonstrating superior performance compared to state-of-the-art methods. The
source code and protocols for reproducing the findings will be made publicly
available.
- Abstract(参考訳): Heterogeneous Face Recognition (HFR) は、熱スペクトルや可視スペクトルなど、さまざまな領域にわたる顔画像のマッチングを目的としており、顔認識(FR)システムの適用性を挑戦的なシナリオに拡張している。
しかし、ターゲット領域における大規模データセットのドメインギャップと限られた可用性は、トレーニングをスクラッチから堅牢で不変なHFRモデルを困難にしている。
本研究では,異なるモダリティを異なるスタイルとして扱うとともに,特徴マップを適応させ,ドメインギャップを埋める枠組みを提案する。
本稿では,事前学習されたfrネットワークに統合してhfrネットワークに変換可能な,新しい条件付き適応インスタンス変調(caim)モジュールを提案する。
CAIMブロックは中間特徴写像を変調し、対象モダリティのスタイルに適応して領域ギャップを効果的にブリッジする。
提案手法は,最小限のペアサンプルでエンドツーエンドのトレーニングを可能にする。
我々は、複数の挑戦的ベンチマークに対するアプローチを広く評価し、最先端の手法と比較して優れた性能を示した。
調査結果を再現するためのソースコードとプロトコルが公開される予定だ。
関連論文リスト
- Modality Agnostic Heterogeneous Face Recognition with Switch Style Modulators [4.910937238451485]
推論中に複数のモーダルを扱えるモーダリティ非依存HFR法を訓練するための新しいフレームワークを提案する。
Switch Style Modulation Blocks (SSMB) と呼ばれる,計算効率のよい自動ルーティング機構を実装することで実現した。
提案したSSMBは、エンドツーエンドにトレーニングでき、事前訓練された顔認識モデルにシームレスに統合され、モダリティに依存しないHFRモデルに変換される。
論文 参考訳(メタデータ) (2024-07-11T16:21:48Z) - Heterogeneous Face Recognition Using Domain Invariant Units [4.910937238451485]
教師ネットワークとして事前訓練された顔認識モデルを用いてドメイン不変ネットワーク層(DIU)を学習する。
提案したDIUは、対照的な蒸留フレームワークを用いて、限られた量のペアトレーニングデータでも効果的に訓練することができる。
提案手法は、事前訓練されたモデルを強化する可能性があり、より広い範囲のデータに適応できる。
論文 参考訳(メタデータ) (2024-04-22T16:58:37Z) - From Modalities to Styles: Rethinking the Domain Gap in Heterogeneous Face Recognition [4.910937238451485]
本研究では,既存の顔認識ネットワークにシームレスに適合する条件適応型インスタンス変調(CAIM)モジュールを提案する。
CAIMブロックは中間特徴写像を変調し、ソースモダリティのスタイルに効率よく適応し、ドメインギャップをブリッジする。
我々は,提案手法を様々な挑戦的HFRベンチマークで広く評価し,最先端の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-04-22T15:00:51Z) - DARNet: Bridging Domain Gaps in Cross-Domain Few-Shot Segmentation with
Dynamic Adaptation [20.979759016826378]
Few-shot segmentation (FSS) は、ベースクラスからの少数のサポートイメージを使用することで、新しいクラスをクエリイメージにセグメントすることを目的としている。
クロスドメイン FSS では、リソース制約のあるドメインにラベルに富んだドメインの機能を活用することで、ドメインの相違による課題が生じる。
本研究は,CD-FSSの一般化と特異性を両立するDARNet法を提案する。
論文 参考訳(メタデータ) (2023-12-08T03:03:22Z) - Adaptive Face Recognition Using Adversarial Information Network [57.29464116557734]
顔認識モデルは、トレーニングデータがテストデータと異なる場合、しばしば退化する。
本稿では,新たな敵情報ネットワーク(AIN)を提案する。
論文 参考訳(メタデータ) (2023-05-23T02:14:11Z) - Deep face recognition with clustering based domain adaptation [57.29464116557734]
そこで本研究では,ターゲットドメインとソースがクラスを共有しない顔認識タスクを対象とした,クラスタリングに基づく新しいドメイン適応手法を提案する。
本手法は,特徴領域をグローバルに整列させ,その一方で,対象クラスタを局所的に識別することで,識別対象特徴を効果的に学習する。
論文 参考訳(メタデータ) (2022-05-27T12:29:11Z) - AFAN: Augmented Feature Alignment Network for Cross-Domain Object
Detection [90.18752912204778]
オブジェクト検出のための教師なしドメイン適応は、多くの現実世界のアプリケーションにおいて難しい問題である。
本稿では、中間領域画像生成とドメイン・アドバイザリー・トレーニングを統合した新しい機能アライメント・ネットワーク(AFAN)を提案する。
提案手法は、類似および異種ドメイン適応の双方において、標準ベンチマークにおける最先端の手法よりも大幅に優れている。
論文 参考訳(メタデータ) (2021-06-10T05:01:20Z) - Inter-class Discrepancy Alignment for Face Recognition [55.578063356210144]
IA(Inter-class DiscrepancyAlignment)という統合フレームワークを提案する。
IDA-DAOは、画像と隣人の相違を考慮した類似度スコアの整合に使用される。
IDA-SSEは、GANで生成された仮想候補画像を導入することで、説得力のあるクラス間隣人を提供できます。
論文 参考訳(メタデータ) (2021-03-02T08:20:08Z) - Exploiting Diverse Characteristics and Adversarial Ambivalence for
Domain Adaptive Segmentation [20.13548631627542]
新しいドメインにセマンティックセグメンテーションモデルを適用することは重要だが難しい問題だ。
特殊なプログレッシブな敵対的トレーニング機構と新しい自己訓練政策によって強化された条件付き適応フレームワークを提案する。
対象の画像が気象条件によって異なる様々な適応シナリオに対して,本手法を評価する。
論文 参考訳(メタデータ) (2020-12-10T11:50:59Z) - Learning Meta Face Recognition in Unseen Domains [74.69681594452125]
メタ顔認識(MFR)というメタラーニングを用いた新しい顔認識手法を提案する。
MFRは、メタ最適化目標を用いてソース/ターゲットドメインシフトを合成する。
一般化顔認識評価のためのベンチマークを2つ提案する。
論文 参考訳(メタデータ) (2020-03-17T14:10:30Z) - Unsupervised Domain Adaptation in Person re-ID via k-Reciprocal
Clustering and Large-Scale Heterogeneous Environment Synthesis [76.46004354572956]
個人再識別のための教師なし領域適応手法を提案する。
実験結果から,ktCUDA法とSHRED法は,再同定性能において,+5.7 mAPの平均的改善を実現することがわかった。
論文 参考訳(メタデータ) (2020-01-14T17:43:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。