Bridging the Gap: Heterogeneous Face Recognition with Conditional
Adaptive Instance Modulation
- URL: http://arxiv.org/abs/2307.07032v1
- Date: Thu, 13 Jul 2023 19:17:04 GMT
- Title: Bridging the Gap: Heterogeneous Face Recognition with Conditional
Adaptive Instance Modulation
- Authors: Anjith George and Sebastien Marcel
- Abstract summary: We introduce a novel Conditional Adaptive Instance Modulation (CAIM) module that can be integrated into pre-trained Face Recognition networks.
The CAIM block modulates intermediate feature maps, to adapt the style of the target modality effectively bridging the domain gap.
Our proposed method allows for end-to-end training with a minimal number of paired samples.
- Score: 7.665392786787577
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Heterogeneous Face Recognition (HFR) aims to match face images across
different domains, such as thermal and visible spectra, expanding the
applicability of Face Recognition (FR) systems to challenging scenarios.
However, the domain gap and limited availability of large-scale datasets in the
target domain make training robust and invariant HFR models from scratch
difficult. In this work, we treat different modalities as distinct styles and
propose a framework to adapt feature maps, bridging the domain gap. We
introduce a novel Conditional Adaptive Instance Modulation (CAIM) module that
can be integrated into pre-trained FR networks, transforming them into HFR
networks. The CAIM block modulates intermediate feature maps, to adapt the
style of the target modality effectively bridging the domain gap. Our proposed
method allows for end-to-end training with a minimal number of paired samples.
We extensively evaluate our approach on multiple challenging benchmarks,
demonstrating superior performance compared to state-of-the-art methods. The
source code and protocols for reproducing the findings will be made publicly
available.
Related papers
- Modality Agnostic Heterogeneous Face Recognition with Switch Style Modulators [4.910937238451485]
We introduce a novel framework designed to train a modality-agnostic HFR method capable of handling multiple modalities during inference.
We achieve this by implementing a computationally efficient automatic routing mechanism called Switch Style Modulation Blocks (SSMB)
Our proposed SSMB can be trained end-to-end and seamlessly integrated into pre-trained face recognition models, transforming them into modality-agnostic HFR models.
arXiv Detail & Related papers (2024-07-11T16:21:48Z) - Heterogeneous Face Recognition Using Domain Invariant Units [4.910937238451485]
We leverage a pretrained face recognition model as a teacher network to learn domaininvariant network layers called Domain-Invariant Units (DIU)
The proposed DIU can be trained effectively even with a limited amount of paired training data, in a contrastive distillation framework.
This proposed approach has the potential to enhance pretrained models, making them more adaptable to a wider range of variations in data.
arXiv Detail & Related papers (2024-04-22T16:58:37Z) - From Modalities to Styles: Rethinking the Domain Gap in Heterogeneous Face Recognition [4.910937238451485]
We present a new Conditional Adaptive Instance Modulation (CAIM) module that seamlessly fits into existing Face Recognition networks.
The CAIM block modulates intermediate feature maps, efficiently adapting to the style of the source modality and bridging the domain gap.
We extensively evaluate the proposed approach on various challenging HFR benchmarks, showing that it outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-04-22T15:00:51Z) - DARNet: Bridging Domain Gaps in Cross-Domain Few-Shot Segmentation with
Dynamic Adaptation [20.979759016826378]
Few-shot segmentation (FSS) aims to segment novel classes in a query image by using only a small number of supporting images from base classes.
In cross-domain FSS, leveraging features from label-rich domains for resource-constrained domains poses challenges due to domain discrepancies.
This work presents a Dynamically Adaptive Refine (DARNet) method that aims to balance generalization and specificity for CD-FSS.
arXiv Detail & Related papers (2023-12-08T03:03:22Z) - Adaptive Face Recognition Using Adversarial Information Network [57.29464116557734]
Face recognition models often degenerate when training data are different from testing data.
We propose a novel adversarial information network (AIN) to address it.
arXiv Detail & Related papers (2023-05-23T02:14:11Z) - Deep face recognition with clustering based domain adaptation [57.29464116557734]
We propose a new clustering-based domain adaptation method designed for face recognition task in which the source and target domain do not share any classes.
Our method effectively learns the discriminative target feature by aligning the feature domain globally, and, at the meantime, distinguishing the target clusters locally.
arXiv Detail & Related papers (2022-05-27T12:29:11Z) - AFAN: Augmented Feature Alignment Network for Cross-Domain Object
Detection [90.18752912204778]
Unsupervised domain adaptation for object detection is a challenging problem with many real-world applications.
We propose a novel augmented feature alignment network (AFAN) which integrates intermediate domain image generation and domain-adversarial training.
Our approach significantly outperforms the state-of-the-art methods on standard benchmarks for both similar and dissimilar domain adaptations.
arXiv Detail & Related papers (2021-06-10T05:01:20Z) - Inter-class Discrepancy Alignment for Face Recognition [55.578063356210144]
We propose a unified framework calledInter-class DiscrepancyAlignment(IDA)
IDA-DAO is used to align the similarity scores considering the discrepancy between the images and its neighbors.
IDA-SSE can provide convincing inter-class neighbors by introducing virtual candidate images generated with GAN.
arXiv Detail & Related papers (2021-03-02T08:20:08Z) - Exploiting Diverse Characteristics and Adversarial Ambivalence for
Domain Adaptive Segmentation [20.13548631627542]
Adapting semantic segmentation models to new domains is an important but challenging problem.
We propose a condition-guided adaptation framework that is empowered by a special progressive adversarial training mechanism and a novel self-training policy.
We evaluate our method on various adaptation scenarios where the target images vary in weather conditions.
arXiv Detail & Related papers (2020-12-10T11:50:59Z) - Learning Meta Face Recognition in Unseen Domains [74.69681594452125]
We propose a novel face recognition method via meta-learning named Meta Face Recognition (MFR)
MFR synthesizes the source/target domain shift with a meta-optimization objective.
We propose two benchmarks for generalized face recognition evaluation.
arXiv Detail & Related papers (2020-03-17T14:10:30Z) - Unsupervised Domain Adaptation in Person re-ID via k-Reciprocal
Clustering and Large-Scale Heterogeneous Environment Synthesis [76.46004354572956]
We introduce an unsupervised domain adaptation approach for person re-identification.
Experimental results show that the proposed ktCUDA and SHRED approach achieves an average improvement of +5.7 mAP in re-identification performance.
arXiv Detail & Related papers (2020-01-14T17:43:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.